openfree's picture
Update app.py
2134133 verified
raw
history blame
13.2 kB
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.cluster import KMeans
import torch
# Set GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize WBGDocTopic
clf = wbgtopic.WBGDocTopic(device=device)
# Download NLTK data if needed
try:
nltk.download('punkt', quiet=True)
nltk.download('vader_lexicon', quiet=True)
except Exception as e:
print(f"NLTK data download error: {e}")
# Sample text for demonstration
SAMPLE_TEXT = """
The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
"""
def safe_process(func):
"""
A decorator that catches and logs exceptions inside a function,
returning None if an error occurs. This helps ensure that
the Gradio interface does not crash from unexpected exceptions.
"""
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Error in {func.__name__}: {str(e)}")
return None
return wrapper
@safe_process
def parse_wbg_results(raw_output):
"""
Convert the raw output from WBGDocTopic into a list of dictionaries with
'label', 'score_mean', and 'score_std'. Adjust logic according to the
actual structure of raw_output.
"""
if not raw_output:
return []
# Example logic: If raw_output is something like:
# [ { "Innovation and Entrepreneurship": 0.74, "Digital Development": 0.65, ... } ]
# We'll parse it accordingly.
first_item = raw_output[0]
# If the first item is already a dict with a 'label' key, it might already be in the right format
if isinstance(first_item, dict) and "label" in first_item:
return raw_output
# If it's a dict containing topic -> score
if isinstance(first_item, dict):
parsed_list = []
for label, val in first_item.items():
parsed_list.append({
"label": label,
"score_mean": float(val),
"score_std": 0.0 # If std is not provided, default to 0
})
return parsed_list
return []
@safe_process
def analyze_text_sections(text):
"""
Splits the text into sections and calls clf.suggest_topics for each section.
Returns a list of topic lists, where each element is the parsed WBG result
for that section.
"""
sentences = sent_tokenize(text)
# Example: group every 3 sentences into one section
sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
section_topics = []
for section in sections:
raw_sec = clf.suggest_topics(section)
parsed_sec = parse_wbg_results(raw_sec)
section_topics.append(parsed_sec)
return section_topics
@safe_process
def calculate_topic_correlations(topic_dicts):
"""
Calculates correlation between topics based on 'score_mean'.
This is usually a single-dimensional correlation across different topics,
which can be conceptually limited, but shown here as an example.
Returns (corr_matrix, labels).
"""
if len(topic_dicts) < 2:
return np.array([[1.0]]), ["Insufficient topics"]
labels = [d['label'] for d in topic_dicts]
scores = [d['score_mean'] for d in topic_dicts]
if len(scores) < 2:
return np.array([[1.0]]), ["Insufficient topics"]
corr_matrix = np.corrcoef(scores)
return corr_matrix, labels
@safe_process
def perform_sentiment_analysis(text):
"""
Uses NLTK's VADER sentiment analyzer to produce sentiment scores
(neg, neu, pos, compound) for each sentence in the text.
Returns a pandas DataFrame of results.
"""
sia = SentimentIntensityAnalyzer()
sents = sent_tokenize(text)
results = [sia.polarity_scores(s) for s in sents]
return pd.DataFrame(results)
@safe_process
def create_topic_clusters(topic_dicts):
"""
Applies a KMeans clustering on (score_mean, score_std).
If there are fewer than 3 topics, returns trivial cluster assignments.
"""
if len(topic_dicts) < 3:
return [0] * len(topic_dicts)
X = []
for t in topic_dicts:
X.append([t['score_mean'], t.get('score_std', 0.0)])
X = np.array(X)
if X.shape[0] < 3:
return [0] * X.shape[0]
kmeans = KMeans(n_clusters=min(3, X.shape[0]), random_state=42)
clusters = kmeans.fit_predict(X)
return clusters.tolist()
@safe_process
def create_main_charts(topic_dicts):
"""
Creates a bar chart and a radar chart for the given list of topics.
Uses 'score_mean' as the base score.
"""
if not topic_dicts:
return go.Figure(), go.Figure()
labels = [t['label'] for t in topic_dicts]
scores = [t['score_mean'] * 100 for t in topic_dicts] # scale to %
# Bar chart
bar_fig = go.Figure(
data=[go.Bar(x=labels, y=scores, marker_color='rgb(55, 83, 109)')]
)
bar_fig.update_layout(
title='Topic Analysis Results',
xaxis_title='Topics',
yaxis_title='Relevance (%)',
template='plotly_white',
height=500,
)
# Radar chart
radar_fig = go.Figure()
radar_fig.add_trace(go.Scatterpolar(
r=scores,
theta=labels,
fill='toself',
name='Topic Distribution'
))
radar_fig.update_layout(
title='Topic Radar Chart',
template='plotly_white',
height=500,
polar=dict(radialaxis=dict(visible=True)),
showlegend=False
)
return bar_fig, radar_fig
@safe_process
def create_correlation_heatmap(corr_matrix, labels):
"""
Creates a heatmap figure of the provided correlation matrix.
If there's insufficient data, shows a placeholder message.
"""
if corr_matrix.ndim == 0:
# It's a scalar => shape ()
corr_matrix = np.array([[corr_matrix]])
if corr_matrix.shape == (1, 1):
# Not enough data for correlation
fig = go.Figure()
fig.add_annotation(text="Not enough topics for correlation", showarrow=False)
return fig
fig = go.Figure(data=go.Heatmap(
z=corr_matrix,
x=labels,
y=labels,
colorscale='Viridis'
))
fig.update_layout(
title='Topic Correlation Heatmap',
height=500,
template='plotly_white'
)
return fig
@safe_process
def create_topic_evolution(section_topics):
"""
Plots topic evolution across sections.
section_topics: list of lists, where each inner list
is a list of dicts [{'label':..., 'score_mean':...}, ...]
"""
fig = go.Figure()
if not section_topics or len(section_topics) == 0:
return fig
if not section_topics[0]:
return fig
# For each topic in the first section, track the score across all sections
for topic_dict in section_topics[0]:
label = topic_dict['label']
score_list = []
for sec_list in section_topics:
match = next((d for d in sec_list if d['label'] == label), None)
if match:
score_list.append(match['score_mean'])
else:
score_list.append(0.0)
fig.add_trace(go.Scatter(
x=list(range(len(section_topics))),
y=score_list,
name=label,
mode='lines+markers'
))
fig.update_layout(
title='Topic Evolution Across Sections',
xaxis_title='Section',
yaxis_title='Score Mean',
height=500,
template='plotly_white'
)
return fig
@safe_process
def create_confidence_gauge(topic_dicts):
"""
Creates individual gauge indicators for each topic's confidence.
A simple heuristic: confidence = (1 - score_std) * 100.
"""
if not topic_dicts:
return go.Figure()
fig = go.Figure()
num_topics = len(topic_dicts)
for i, t in enumerate(topic_dicts):
# If score_std not present, default to 0 => confidence = 100%
conf_val = 100.0 * (1.0 - t.get("score_std", 0.0))
fig.add_trace(go.Indicator(
mode="gauge+number",
value=conf_val,
title={'text': t['label']},
domain={'row': 0, 'column': i}
))
fig.update_layout(
grid={'rows': 1, 'columns': num_topics},
height=400,
template='plotly_white'
)
return fig
@spaces.GPU()
def process_all_analysis(text):
"""
Main function that calls all analysis steps and returns
structured JSON plus various Plotly figures.
"""
try:
# 1) Suggest topics for the entire text
raw_results = clf.suggest_topics(text)
all_topics = parse_wbg_results(raw_results)
# 2) Sort by 'score_mean' descending to get top 5
sorted_topics = sorted(all_topics, key=lambda x: x['score_mean'], reverse=True)
top_topics = sorted_topics[:5]
# 3) Analyze by sections
section_topics = analyze_text_sections(text)
# 4) Extra analyses
corr_matrix, corr_labels = calculate_topic_correlations(all_topics)
sentiments_df = perform_sentiment_analysis(text)
clusters = create_topic_clusters(all_topics)
# 5) Build charts
bar_chart, radar_chart = create_main_charts(top_topics)
heatmap = create_correlation_heatmap(corr_matrix, corr_labels)
evolution_chart = create_topic_evolution(section_topics)
gauge_chart = create_confidence_gauge(top_topics)
# 6) Prepare JSON output (ensure valid JSON with string keys)
results = {
"top_topics": top_topics, # list of dict
"clusters": clusters, # list of ints
"sentiments": sentiments_df.to_dict(orient="records")
}
# Return JSON + Figures
return (
results, # JSON output
bar_chart, # plot1
radar_chart, # plot2
heatmap, # plot3
evolution_chart,# plot4
gauge_chart, # plot5
go.Figure() # plot6 (placeholder for sentiment plot, if desired)
)
except Exception as e:
print(f"Analysis error: {str(e)}")
empty_fig = go.Figure()
return (
{"error": str(e), "topics": []},
empty_fig,
empty_fig,
empty_fig,
empty_fig,
empty_fig,
empty_fig
)
######################################################
# Gradio UI Definition #
######################################################
with gr.Blocks(title="Advanced Document Topic Analyzer") as demo:
gr.Markdown("## 📝 Advanced Document Topic Analyzer")
gr.Markdown(
"Enter text, then click 'Start Analysis' to see topic analysis, correlation, "
"confidence gauges, sentiment, and more."
)
with gr.Row():
text_input = gr.Textbox(
value=SAMPLE_TEXT,
label="Text to Analyze",
lines=8
)
with gr.Row():
submit_btn = gr.Button("Start Analysis", variant="primary")
with gr.Tabs():
with gr.TabItem("Main Analysis"):
with gr.Row():
plot1 = gr.Plot(label="Topic Distribution")
plot2 = gr.Plot(label="Radar Chart")
with gr.TabItem("Detailed Analysis"):
with gr.Row():
plot3 = gr.Plot(label="Correlation Heatmap")
plot4 = gr.Plot(label="Topic Evolution")
with gr.TabItem("Confidence Analysis"):
plot5 = gr.Plot(label="Confidence Gauge")
with gr.TabItem("Sentiment Analysis"):
plot6 = gr.Plot(label="Sentiment Results")
with gr.Row():
output_json = gr.JSON(label="Detailed Analysis Output")
submit_btn.click(
fn=process_all_analysis,
inputs=[text_input],
outputs=[output_json, plot1, plot2, plot3, plot4, plot5, plot6]
)
if __name__ == "__main__":
demo.queue(max_size=1)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # Set True if you want a public share link
debug=True
)