import gradio as gr import numpy as np import random import spaces from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=1.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "A capybara wearing a suit holding a sign that reads Hello World", "A serene mountain lake at sunset with cherry blossoms floating on the water", "A magical crystal dragon with iridescent scales in a glowing forest", "A Victorian steampunk teapot with intricate brass gears and rose gold accents", "A futuristic neon cityscape with flying cars and holographic billboards", "A red panda painter creating a masterpiece with tiny paws in an art studio", ] css = """ body { background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%); background-attachment: fixed; min-height: 100vh; } #col-container { margin: 0 auto; max-width: 640px; background-color: rgba(255, 255, 255, 0.85); border-radius: 16px; box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1); padding: 24px; backdrop-filter: blur(10px); } .gradio-container { background: transparent !important; } .gr-button-primary { background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important; border: none !important; transition: all 0.3s ease; } .gr-button-primary:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3); } .gr-form { border-radius: 12px; background-color: rgba(255, 255, 255, 0.7); } .gr-accordion { border-radius: 12px; overflow: hidden; } h1 { background: linear-gradient(90deg, #6b9dfc, #8c6bfc); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 800; } """ with gr.Blocks(theme="apriel", css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # TensorArt Stable Diffusion 3.5 Large TurboX") gr.Markdown("[8-step distilled turbo model](https://huggingface.co/tensorart/stable-diffusion-3.5-large-TurboX)") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=1.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=8, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch(mcp_server=True)