openfree commited on
Commit
349bef8
·
verified ·
1 Parent(s): 32d18bb

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -992
app.py DELETED
@@ -1,992 +0,0 @@
1
- import os
2
- import re
3
- import random
4
- from http import HTTPStatus
5
- from typing import Dict, List, Optional, Tuple
6
- import base64
7
- import anthropic
8
- import openai
9
- import asyncio
10
- import time
11
- from functools import partial
12
- import json
13
- import gradio as gr
14
- import modelscope_studio.components.base as ms
15
- import modelscope_studio.components.legacy as legacy
16
- import modelscope_studio.components.antd as antd
17
- import html
18
- import urllib.parse
19
- from huggingface_hub import HfApi, create_repo, hf_hub_download
20
- import string
21
- import requests
22
- from selenium import webdriver
23
- from selenium.webdriver.support.ui import WebDriverWait
24
- from selenium.webdriver.support import expected_conditions as EC
25
- from selenium.webdriver.common.by import By
26
- from selenium.common.exceptions import WebDriverException, TimeoutException
27
- from PIL import Image
28
- from io import BytesIO
29
- from datetime import datetime
30
- import spaces
31
- from safetensors.torch import load_file
32
- from diffusers import FluxPipeline
33
- import torch
34
- from os import path # 이 줄을 추가
35
- from datetime import datetime, timedelta
36
- from requests.adapters import HTTPAdapter
37
- from requests.packages.urllib3.util.retry import Retry
38
- # 캐시 경로 설정
39
- cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
40
- os.environ["TRANSFORMERS_CACHE"] = cache_path
41
- os.environ["HF_HUB_CACHE"] = cache_path
42
- os.environ["HF_HOME"] = cache_path
43
-
44
-
45
- # Hugging Face 토큰 설정
46
- HF_TOKEN = os.getenv("HF_TOKEN")
47
- if not HF_TOKEN:
48
- print("Warning: HF_TOKEN not found in environment variables")
49
-
50
- # FLUX 모델 초기화
51
- if not path.exists(cache_path):
52
- os.makedirs(cache_path, exist_ok=True)
53
-
54
- try:
55
- pipe = FluxPipeline.from_pretrained(
56
- "black-forest-labs/FLUX.1-dev",
57
- torch_dtype=torch.bfloat16,
58
- use_auth_token=HF_TOKEN # Hugging Face 토큰 추가
59
- )
60
- pipe.load_lora_weights(
61
- hf_hub_download(
62
- "ByteDance/Hyper-SD",
63
- "Hyper-FLUX.1-dev-8steps-lora.safetensors",
64
- token=HF_TOKEN # Hugging Face 토큰 추가
65
- )
66
- )
67
- pipe.fuse_lora(lora_scale=0.125)
68
- pipe.to(device="cuda", dtype=torch.bfloat16)
69
- print("Successfully initialized FLUX model with authentication")
70
- except Exception as e:
71
- print(f"Error initializing FLUX model: {str(e)}")
72
- pipe = None
73
-
74
-
75
-
76
- # 이미지 생성 함수 추가
77
- @spaces.GPU
78
- def generate_image(prompt, height=512, width=512, steps=8, scales=3.5, seed=3413):
79
- with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
80
- return pipe(
81
- prompt=[prompt],
82
- generator=torch.Generator().manual_seed(int(seed)),
83
- num_inference_steps=int(steps),
84
- guidance_scale=float(scales),
85
- height=int(height),
86
- width=int(width),
87
- max_sequence_length=256
88
- ).images[0]
89
-
90
- # SystemPrompt 부분을 직접 정의
91
- SystemPrompt = """You are 'MOUSE-I', an advanced AI visualization expert. Your mission is to transform every response into a visually stunning and highly informative presentation.
92
-
93
- Core Capabilities:
94
- - Transform text responses into rich visual experiences
95
- - Create interactive data visualizations and charts
96
- - Design beautiful and intuitive user interfaces
97
- - Utilize engaging animations and transitions
98
- - Present information in a clear, structured manner
99
-
100
- Visual Elements to Include:
101
- - Charts & Graphs (using Chart.js, D3.js)
102
- - Interactive Data Visualizations
103
- - Modern UI Components
104
- - Engaging Animations
105
- - Informative Icons & Emojis
106
- - Color-coded Information Blocks
107
- - Progress Indicators
108
- - Timeline Visualizations
109
- - Statistical Representations
110
- - Comparison Tables
111
-
112
- Technical Requirements:
113
- - Modern HTML5/CSS3/JavaScript
114
- - Responsive Design
115
- - Interactive Elements
116
- - Clean Typography
117
- - Professional Color Schemes
118
- - Smooth Animations
119
- - Cross-browser Compatibility
120
-
121
- Libraries Available:
122
- - Chart.js for Data Visualization
123
- - D3.js for Complex Graphics
124
- - Bootstrap for Layout
125
- - jQuery for Interactions
126
- - Three.js for 3D Elements
127
-
128
- Design Principles:
129
- - Visual Hierarchy
130
- - Clear Information Flow
131
- - Consistent Styling
132
- - Intuitive Navigation
133
- - Engaging User Experience
134
- - Accessibility Compliance
135
-
136
- Remember to:
137
- - Present data in the most visually appealing way
138
- - Use appropriate charts for different data types
139
- - Include interactive elements where relevant
140
- - Maintain a professional and modern aesthetic
141
- - Ensure responsive design for all devices
142
-
143
- Return only HTML code wrapped in code blocks, focusing on creating visually stunning and informative presentations.
144
- """
145
-
146
- from config import DEMO_LIST
147
-
148
- class Role:
149
- SYSTEM = "system"
150
- USER = "user"
151
- ASSISTANT = "assistant"
152
-
153
- History = List[Tuple[str, str]]
154
- Messages = List[Dict[str, str]]
155
-
156
- # 이미지 캐시를 메모리에 저장
157
- IMAGE_CACHE = {}
158
-
159
- # boost_prompt 함수와 handle_boost 함수를 추가합니다
160
- def boost_prompt(prompt: str) -> str:
161
- if not prompt:
162
- return ""
163
-
164
- # 증강을 위한 시스템 프롬프트
165
- boost_system_prompt = """
166
- 당신은 웹 개발 프롬프트 전문가입니다.
167
- 주어진 프롬프트를 분석하여 더 상세하고 전문적인 요구사항으로 확장하되,
168
- 원래 의도와 목적은 그대로 유지하면서 다음 관점들을 고려하여 증강하십시오:
169
- 1. 기술적 구현 상세
170
- 2. UI/UX 디자인 요소
171
- 3. 사용자 경험 최적화
172
- 4. 성능과 보안
173
- 5. 접근성과 호환성
174
-
175
- 기존 SystemPrompt의 모든 규칙을 준수하면서 증강된 프롬프트를 생성하십시오.
176
- """
177
-
178
- try:
179
- # Claude API 시도
180
- try:
181
- response = claude_client.messages.create(
182
- model="claude-3-5-sonnet-20241022",
183
- max_tokens=2000,
184
- messages=[{
185
- "role": "user",
186
- "content": f"다음 프롬프트를 분석하고 증강하시오: {prompt}"
187
- }]
188
- )
189
-
190
- if hasattr(response, 'content') and len(response.content) > 0:
191
- return response.content[0].text
192
- raise Exception("Claude API 응답 형식 오류")
193
-
194
- except Exception as claude_error:
195
- print(f"Claude API 에러, OpenAI로 전환: {str(claude_error)}")
196
-
197
- # OpenAI API 시도
198
- completion = openai_client.chat.completions.create(
199
- model="gpt-4",
200
- messages=[
201
- {"role": "system", "content": boost_system_prompt},
202
- {"role": "user", "content": f"다음 프롬프트를 분석하고 증강하시오: {prompt}"}
203
- ],
204
- max_tokens=2000,
205
- temperature=0.7
206
- )
207
-
208
- if completion.choices and len(completion.choices) > 0:
209
- return completion.choices[0].message.content
210
- raise Exception("OpenAI API 응답 형식 오류")
211
-
212
- except Exception as e:
213
- print(f"프롬프트 증강 중 오류 발생: {str(e)}")
214
- return prompt # 오류 발생시 원본 프롬프트 반환
215
-
216
- # Boost 버튼 이벤트 핸들러
217
- def handle_boost(prompt: str):
218
- try:
219
- boosted_prompt = boost_prompt(prompt)
220
- return boosted_prompt, gr.update(active_key="empty")
221
- except Exception as e:
222
- print(f"Boost 처리 중 오류: {str(e)}")
223
- return prompt, gr.update(active_key="empty")
224
-
225
- def get_image_base64(image_path):
226
- if image_path in IMAGE_CACHE:
227
- return IMAGE_CACHE[image_path]
228
- try:
229
- with open(image_path, "rb") as image_file:
230
- encoded_string = base64.b64encode(image_file.read()).decode()
231
- IMAGE_CACHE[image_path] = encoded_string
232
- return encoded_string
233
- except:
234
- return IMAGE_CACHE.get('default.png', '')
235
-
236
- def history_to_messages(history: History, system: str) -> Messages:
237
- messages = [{'role': Role.SYSTEM, 'content': system}]
238
- for h in history:
239
- messages.append({'role': Role.USER, 'content': h[0]})
240
- messages.append({'role': Role.ASSISTANT, 'content': h[1]})
241
- return messages
242
-
243
- def messages_to_history(messages: Messages) -> History:
244
- assert messages[0]['role'] == Role.SYSTEM
245
- history = []
246
- for q, r in zip(messages[1::2], messages[2::2]):
247
- history.append([q['content'], r['content']])
248
- return history
249
-
250
- # API 클라이언트 초기화
251
- YOUR_ANTHROPIC_TOKEN = os.getenv('ANTHROPIC_API_KEY', '') # 기본값 추가
252
- YOUR_OPENAI_TOKEN = os.getenv('OPENAI_API_KEY', '') # 기본값 추가
253
-
254
- # API 키 검증
255
- if not YOUR_ANTHROPIC_TOKEN or not YOUR_OPENAI_TOKEN:
256
- print("Warning: API keys not found in environment variables")
257
-
258
- # API 클라이언트 초기화 시 예외 처리 추가
259
- try:
260
- claude_client = anthropic.Anthropic(api_key=YOUR_ANTHROPIC_TOKEN)
261
- openai_client = openai.OpenAI(api_key=YOUR_OPENAI_TOKEN)
262
- except Exception as e:
263
- print(f"Error initializing API clients: {str(e)}")
264
- claude_client = None
265
- openai_client = None
266
-
267
- # try_claude_api 함수 수정
268
- async def try_claude_api(system_message, claude_messages, timeout=15):
269
- try:
270
- start_time = time.time()
271
- with claude_client.messages.stream(
272
- model="claude-3-5-sonnet-20241022",
273
- max_tokens=7860,
274
- system=system_message,
275
- messages=claude_messages
276
- ) as stream:
277
- collected_content = ""
278
- for chunk in stream:
279
- current_time = time.time()
280
- if current_time - start_time > timeout:
281
- print(f"Claude API response time: {current_time - start_time:.2f} seconds")
282
- raise TimeoutError("Claude API timeout")
283
- if chunk.type == "content_block_delta":
284
- collected_content += chunk.delta.text
285
- yield collected_content
286
- await asyncio.sleep(0)
287
-
288
- start_time = current_time
289
-
290
- except Exception as e:
291
- print(f"Claude API error: {str(e)}")
292
- raise e
293
-
294
- async def try_openai_api(openai_messages):
295
- try:
296
- stream = openai_client.chat.completions.create(
297
- model="gpt-4o",
298
- messages=openai_messages,
299
- stream=True,
300
- max_tokens=4096,
301
- temperature=0.7
302
- )
303
-
304
- collected_content = ""
305
- for chunk in stream:
306
- if chunk.choices[0].delta.content is not None:
307
- collected_content += chunk.choices[0].delta.content
308
- yield collected_content
309
-
310
- except Exception as e:
311
- print(f"OpenAI API error: {str(e)}")
312
- raise e
313
-
314
- class Demo:
315
- def __init__(self):
316
- pass
317
-
318
- async def generation_code(self, query: Optional[str], _setting: Dict[str, str]):
319
- if not query or query.strip() == '':
320
- query = get_random_placeholder()
321
-
322
- # 이미지 생성이 필요한지 확인
323
- needs_image = '이미지' in query or '그림' in query or 'image' in query.lower()
324
- image_prompt = None
325
-
326
- # 이미지 프롬프트 추출
327
- if needs_image:
328
- for keyword in ['이미지:', '그림:', 'image:']:
329
- if keyword in query.lower():
330
- image_prompt = query.split(keyword)[1].strip()
331
- break
332
- if not image_prompt:
333
- image_prompt = query # 명시적 프롬프트가 없으면 전체 쿼리 사용
334
-
335
- messages = [{'role': Role.SYSTEM, 'content': _setting['system']}]
336
- messages.append({'role': Role.USER, 'content': query})
337
-
338
- system_message = messages[0]['content']
339
- claude_messages = [{"role": "user", "content": query}]
340
- openai_messages = [
341
- {"role": "system", "content": system_message},
342
- {"role": "user", "content": query}
343
- ]
344
-
345
- try:
346
- yield [
347
- "",
348
- None,
349
- gr.update(active_key="loading"),
350
- gr.update(open=True)
351
- ]
352
- await asyncio.sleep(0)
353
-
354
- collected_content = None
355
- try:
356
- async for content in try_claude_api(system_message, claude_messages):
357
- yield [
358
- "",
359
- None,
360
- gr.update(active_key="loading"),
361
- gr.update(open=True)
362
- ]
363
- await asyncio.sleep(0)
364
- collected_content = content
365
-
366
- except Exception as claude_error:
367
- print(f"Falling back to OpenAI API due to Claude error: {str(claude_error)}")
368
-
369
- async for content in try_openai_api(openai_messages):
370
- yield [
371
- "",
372
- None,
373
- gr.update(active_key="loading"),
374
- gr.update(open=True)
375
- ]
376
- await asyncio.sleep(0)
377
- collected_content = content
378
-
379
- if collected_content:
380
- # 이미지 생성이 필요한 경우
381
- if needs_image and image_prompt:
382
- try:
383
- print(f"Generating image for prompt: {image_prompt}")
384
- # FLUX 모델을 사용하여 이미지 생성
385
- if pipe is not None:
386
- image = generate_image(
387
- prompt=image_prompt,
388
- height=512,
389
- width=512,
390
- steps=8,
391
- scales=3.5,
392
- seed=random.randint(1, 10000)
393
- )
394
-
395
- # 이미지를 Base64로 인코딩
396
- buffered = BytesIO()
397
- image.save(buffered, format="PNG")
398
- img_str = base64.b64encode(buffered.getvalue()).decode()
399
-
400
- # HTML에 이미지 추가
401
- image_html = f'''
402
- <div class="generated-image" style="margin: 20px 0; text-align: center;">
403
- <h3 style="color: #333; margin-bottom: 10px;">Generated Image:</h3>
404
- <img src="data:image/png;base64,{img_str}"
405
- style="max-width: 100%;
406
- border-radius: 10px;
407
- box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
408
- <p style="color: #666; margin-top: 10px; font-style: italic;">
409
- Prompt: {html.escape(image_prompt)}
410
- </p>
411
- </div>
412
- '''
413
-
414
- # HTML 응답에 이미지 삽입
415
- if '```html' in collected_content:
416
- # HTML 코드 블록 내부에 이미지 추가
417
- collected_content = collected_content.replace('```html\n', f'```html\n{image_html}')
418
- else:
419
- # HTML 코드 블록으로 감싸서 이미지 추가
420
- collected_content = f'```html\n{image_html}\n```\n{collected_content}'
421
-
422
- print("Image generation successful")
423
- else:
424
- raise Exception("FLUX model not initialized")
425
-
426
- except Exception as e:
427
- print(f"Image generation error: {str(e)}")
428
- error_message = f'''
429
- <div style="color: #ff4d4f; padding: 10px; margin: 10px 0;
430
- border-left: 4px solid #ff4d4f; background: #fff2f0;">
431
- <p>Failed to generate image: {str(e)}</p>
432
- </div>
433
- '''
434
- if '```html' in collected_content:
435
- collected_content = collected_content.replace('```html\n', f'```html\n{error_message}')
436
- else:
437
- collected_content = f'```html\n{error_message}\n```\n{collected_content}'
438
-
439
- # 최종 결과 표시
440
- yield [
441
- collected_content,
442
- send_to_sandbox(remove_code_block(collected_content)),
443
- gr.update(active_key="render"),
444
- gr.update(open=False)
445
- ]
446
- else:
447
- raise ValueError("No content was generated from either API")
448
-
449
- except Exception as e:
450
- print(f"Error details: {str(e)}")
451
- raise ValueError(f'Error calling APIs: {str(e)}')
452
-
453
- def clear_history(self):
454
- return []
455
-
456
- def remove_code_block(text):
457
- pattern = r'```html\n(.+?)\n```'
458
- match = re.search(pattern, text, re.DOTALL)
459
- if match:
460
- return match.group(1).strip()
461
- else:
462
- return text.strip()
463
-
464
- def history_render(history: History):
465
- return gr.update(open=True), history
466
-
467
- def send_to_sandbox(code):
468
- encoded_html = base64.b64encode(code.encode('utf-8')).decode('utf-8')
469
- data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
470
- return f"""
471
- <iframe
472
- src="{data_uri}"
473
- style="width:100%; height:800px; border:none;"
474
- frameborder="0"
475
- ></iframe>
476
- """
477
- # 배포 관련 함수 추가
478
- def generate_space_name():
479
- """6자리 랜덤 영문 이름 생성"""
480
- letters = string.ascii_lowercase
481
- return ''.join(random.choice(letters) for i in range(6))
482
-
483
- def deploy_to_vercel(code: str):
484
- try:
485
- token = "A8IFZmgW2cqA4yUNlLPnci0N"
486
- if not token:
487
- return "Vercel 토큰이 설정되지 않았습니다."
488
-
489
- # 6자리 영문 프로젝트 이름 생성
490
- project_name = ''.join(random.choice(string.ascii_lowercase) for i in range(6))
491
-
492
-
493
- # Vercel API 엔드포인트
494
- deploy_url = "https://api.vercel.com/v13/deployments"
495
-
496
- # 헤더 설정
497
- headers = {
498
- "Authorization": f"Bearer {token}",
499
- "Content-Type": "application/json"
500
- }
501
-
502
- # package.json 파일 생성
503
- package_json = {
504
- "name": project_name,
505
- "version": "1.0.0",
506
- "private": True, # true -> True로 수정
507
- "dependencies": {
508
- "vite": "^5.0.0"
509
- },
510
- "scripts": {
511
- "dev": "vite",
512
- "build": "echo 'No build needed' && mkdir -p dist && cp index.html dist/",
513
- "preview": "vite preview"
514
- }
515
- }
516
-
517
- # 배포할 파일 데이터 구조
518
- files = [
519
- {
520
- "file": "index.html",
521
- "data": code
522
- },
523
- {
524
- "file": "package.json",
525
- "data": json.dumps(package_json, indent=2) # indent 추가로 가독성 향상
526
- }
527
- ]
528
-
529
- # 프로젝트 설정
530
- project_settings = {
531
- "buildCommand": "npm run build",
532
- "outputDirectory": "dist",
533
- "installCommand": "npm install",
534
- "framework": None
535
- }
536
-
537
- # 배포 요청 데이터
538
- deploy_data = {
539
- "name": project_name,
540
- "files": files,
541
- "target": "production",
542
- "projectSettings": project_settings
543
- }
544
-
545
-
546
- deploy_response = requests.post(deploy_url, headers=headers, json=deploy_data)
547
-
548
- if deploy_response.status_code != 200:
549
- return f"배포 실패: {deploy_response.text}"
550
-
551
- # URL 형식 수정 - 6자리.vercel.app 형태로 반환
552
- deployment_url = f"{project_name}.vercel.app"
553
-
554
- time.sleep(5)
555
-
556
- return f"""배포 완료! <a href="https://{deployment_url}" target="_blank" style="color: #1890ff; text-decoration: underline; cursor: pointer;">https://{deployment_url}</a>"""
557
-
558
- except Exception as e:
559
- return f"배포 중 오류 발생: {str(e)}"
560
-
561
- theme = gr.themes.Soft()
562
-
563
- def get_random_placeholder():
564
- return random.choice(DEMO_LIST)['description']
565
-
566
- def update_placeholder():
567
- return gr.update(placeholder=get_random_placeholder())
568
-
569
-
570
-
571
- def create_main_interface():
572
- """메인 인터페이스 생성 함수"""
573
-
574
- #NEW - 검색 결과를 통합한 응답 생성 함수
575
- async def execute_search_and_generate(query, setting):
576
- try:
577
- print(f"Executing search for query: {query}")
578
-
579
- # 검색 실행
580
- url = "https://api.serphouse.com/serp/live"
581
- payload = {
582
- "data": {
583
- "q": query,
584
- "domain": "google.com",
585
- "lang": "en",
586
- "device": "desktop",
587
- "serp_type": "news",
588
- "loc": "United States",
589
- "page": "1",
590
- "num": "10"
591
- }
592
- }
593
- headers = {
594
- "Authorization": "Bearer V38CNn4HXpLtynJQyOeoUensTEYoFy8PBUxKpDqAW1pawT1vfJ2BWtPQ98h6",
595
- "Content-Type": "application/json"
596
- }
597
-
598
- response = requests.post(url, headers=headers, json=payload)
599
- results = response.json()
600
- print(f"Search results: {results}") # 디버깅용
601
-
602
- # 검색 결과를 HTML로 변환
603
- search_content = "```html\n<div class='search-results'>\n"
604
- search_content += "<h2>최신 뉴스 검색 결과</h2>\n"
605
-
606
- # API 응답 구조에 맞게 수정
607
- if 'results' in results:
608
- news_items = results['results'].get('news', [])
609
- for item in news_items[:5]:
610
- search_content += f"""
611
- <div class="search-item">
612
- <h3><a href="{item['url']}" target="_blank">{item['title']}</a></h3>
613
- <p>{item['snippet']}</p>
614
- <div class="search-meta">
615
- <span class="source">{item['channel']}</span>
616
- <span class="time">{item['time']}</span>
617
- </div>
618
- </div>
619
- """
620
- search_content += "</div>\n```"
621
-
622
- # 검색 결과를 포함한 프롬프트 생성
623
- enhanced_prompt = f"""Based on these news search results, create a comprehensive visual summary:
624
-
625
- {search_content}
626
-
627
- Please create a visually appealing HTML response that:
628
- 1. Summarizes the key points from the news
629
- 2. Organizes information in a clear structure
630
- 3. Uses appropriate HTML formatting and styling
631
- 4. Includes relevant quotes and statistics
632
- 5. Provides proper source attribution
633
-
634
- The response should be in HTML format with appropriate styling."""
635
-
636
- print("Generating response with search results...") # 디버깅용
637
-
638
- # async generator를 처리하기 위한 수정
639
- async for result in demo_instance.generation_code(enhanced_prompt, setting):
640
- final_result = result
641
- print(f"Generated result: {final_result}") # 디버깅용
642
-
643
- print("Response generation completed") # 디버깅용
644
- return final_result
645
-
646
- except Exception as e:
647
- print(f"Search error: {str(e)}")
648
- print(f"Full error details: {str(e.__class__.__name__)}: {str(e)}")
649
- return [
650
- "",
651
- None,
652
- gr.update(active_key="error"),
653
- gr.update(open=False)
654
- ]
655
-
656
- def execute_code(query: str):
657
- if not query or query.strip() == '':
658
- return None, gr.update(active_key="empty")
659
-
660
- try:
661
- if '```html' in query and '```' in query:
662
- code = remove_code_block(query)
663
- else:
664
- code = query.strip()
665
-
666
- return send_to_sandbox(code), gr.update(active_key="render")
667
- except Exception as e:
668
- print(f"Error executing code: {str(e)}")
669
- return None, gr.update(active_key="empty")
670
-
671
- async def handle_generation(query, setting, is_search):
672
- try:
673
- print(f"Mode: {'Web Search' if is_search else 'Generate'}") # 디버깅용
674
- if is_search:
675
- print("Executing search and generate...") # 디버깅용
676
- return await execute_search_and_generate(query, setting)
677
- else:
678
- print("Executing normal generation...") # 디버깅용
679
- async for result in demo_instance.generation_code(query, setting):
680
- final_result = result
681
- return final_result
682
- except Exception as e:
683
- print(f"Generation error: {str(e)}")
684
- return ["", None, gr.update(active_key="error"), gr.update(open=False)]
685
-
686
- # CSS 파일 내용을 직접 적용
687
- with open('app.css', 'r', encoding='utf-8') as f:
688
- custom_css = f.read()
689
-
690
- custom_css = """
691
- /* 전체 컨테이너 */
692
- .container {
693
- max-width: 1400px;
694
- margin: 0 auto;
695
- padding: 20px;
696
- }
697
-
698
- /* 메인 레이아웃 */
699
- .main-tabs {
700
- display: flex;
701
- gap: 30px;
702
- min-height: 90vh;
703
- background: #f5f7fa;
704
- border-radius: 20px;
705
- padding: 30px;
706
- box-shadow: 0 10px 40px rgba(0,0,0,0.1);
707
- }
708
-
709
- /* 좌측 패널 */
710
- .left-panel {
711
- flex: 1;
712
- background: white;
713
- border-radius: 15px;
714
- padding: 25px;
715
- box-shadow: 0 4px 15px rgba(0,0,0,0.05);
716
- display: flex;
717
- flex-direction: column;
718
- gap: 20px;
719
- }
720
-
721
- /* 우측 패널 */
722
- .right-panel {
723
- flex: 2;
724
- background: white;
725
- border-radius: 15px;
726
- padding: 25px;
727
- box-shadow: 0 4px 15px rgba(0,0,0,0.05);
728
- }
729
-
730
- /* 모드 선택기 */
731
- .mode-selector {
732
- background: #f8f9fa;
733
- padding: 20px;
734
- border-radius: 12px;
735
- border: 1px solid #e0e5ec;
736
- }
737
-
738
- /* 입력 영역 */
739
- .input-area {
740
- display: flex;
741
- flex-direction: column;
742
- gap: 15px;
743
- }
744
-
745
- .custom-textarea {
746
- min-height: 200px !important;
747
- padding: 20px !important;
748
- border: 2px solid #e0e5ec !important;
749
- border-radius: 12px !important;
750
- font-size: 16px !important;
751
- line-height: 1.6 !important;
752
- resize: vertical !important;
753
- transition: all 0.3s ease !important;
754
- }
755
-
756
- .custom-textarea:focus {
757
- border-color: #007aff !important;
758
- box-shadow: 0 0 0 3px rgba(0,122,255,0.1) !important;
759
- }
760
-
761
- /* 버튼 그룹 */
762
- .button-group {
763
- display: flex;
764
- gap: 12px;
765
- margin-top: 20px;
766
- }
767
-
768
- .generate-btn {
769
- background: linear-gradient(45deg, #007aff, #00a2ff) !important;
770
- color: white !important;
771
- padding: 12px 24px !important;
772
- border-radius: 10px !important;
773
- font-weight: 600 !important;
774
- border: none !important;
775
- box-shadow: 0 4px 15px rgba(0,122,255,0.3) !important;
776
- transition: all 0.3s ease !important;
777
- }
778
-
779
- .enhance-btn {
780
- background: white !important;
781
- color: #007aff !important;
782
- padding: 12px 24px !important;
783
- border-radius: 10px !important;
784
- font-weight: 600 !important;
785
- border: 2px solid #007aff !important;
786
- transition: all 0.3s ease !important;
787
- }
788
-
789
- .share-btn {
790
- background: white !important;
791
- color: #28c840 !important;
792
- padding: 12px 24px !important;
793
- border-radius: 10px !important;
794
- font-weight: 600 !important;
795
- border: 2px solid #28c840 !important;
796
- transition: all 0.3s ease !important;
797
- }
798
-
799
- /* 버튼 호버 효과 */
800
- .generate-btn:hover {
801
- transform: translateY(-2px);
802
- box-shadow: 0 6px 20px rgba(0,122,255,0.4) !important;
803
- }
804
-
805
- .enhance-btn:hover {
806
- background: rgba(0,122,255,0.1) !important;
807
- transform: translateY(-2px);
808
- }
809
-
810
- .share-btn:hover {
811
- background: rgba(40,200,64,0.1) !important;
812
- transform: translateY(-2px);
813
- }
814
-
815
- /* 프리뷰 영역 */
816
- .preview-container {
817
- background: white;
818
- border-radius: 15px;
819
- overflow: hidden;
820
- }
821
-
822
- .preview-header {
823
- background: #f8f9fa;
824
- padding: 15px;
825
- border-bottom: 1px solid #e0e5ec;
826
- display: flex;
827
- align-items: center;
828
- gap: 15px;
829
- }
830
-
831
- .window-controls {
832
- display: flex;
833
- gap: 8px;
834
- }
835
-
836
- .control {
837
- width: 12px;
838
- height: 12px;
839
- border-radius: 50%;
840
- transition: all 0.3s ease;
841
- }
842
-
843
- .close { background: #ff5f57; }
844
- .minimize { background: #febc2e; }
845
- .maximize { background: #28c840; }
846
-
847
- .preview-content {
848
- padding: 25px;
849
- min-height: 500px;
850
- }
851
-
852
- /* 결과 영역 */
853
- .result-area {
854
- background: #f8f9fa;
855
- border-radius: 12px;
856
- padding: 20px;
857
- margin-top: 20px;
858
- }
859
-
860
- /* 로딩 상태 */
861
- .loading-container {
862
- display: flex;
863
- flex-direction: column;
864
- align-items: center;
865
- justify-content: center;
866
- padding: 40px;
867
- gap: 20px;
868
- }
869
-
870
- /* 반응형 디자인 */
871
- @media (max-width: 1200px) {
872
- .main-tabs {
873
- flex-direction: column;
874
- }
875
-
876
- .left-panel, .right-panel {
877
- width: 100%;
878
- }
879
- }
880
- """
881
-
882
- demo = gr.Blocks(css=custom_css, theme=theme)
883
-
884
- with demo:
885
- with gr.Row(elem_classes="container"):
886
- with gr.Column(elem_classes="main-tabs"):
887
- # 좌측 패널
888
- with gr.Column(scale=1, elem_classes="left-panel"):
889
- mode = gr.Radio(
890
- choices=["Generate", "Generate + Web Search"],
891
- label="Mode",
892
- value="Generate",
893
- info="Select mode for content generation",
894
- elem_classes="mode-selector"
895
- )
896
-
897
- with gr.Column(elem_classes="input-area"):
898
- input = gr.Textbox(
899
- label="Enter your prompt",
900
- placeholder="Type your request here...",
901
- lines=8,
902
- elem_classes="custom-textarea"
903
- )
904
-
905
- with gr.Row(elem_classes="button-group"):
906
- btn = gr.Button("Generate", elem_classes="generate-btn")
907
- boost_btn = gr.Button("Enhance", elem_classes="enhance-btn")
908
- deploy_btn = gr.Button("Share", elem_classes="share-btn")
909
-
910
- deploy_result = gr.HTML(
911
- label="Share Result",
912
- elem_classes="result-area"
913
- )
914
-
915
- # 우측 패널
916
- with gr.Column(scale=2, elem_classes="right-panel"):
917
- with gr.Column(elem_classes="preview-container"):
918
- gr.HTML("""
919
- <div class="preview-header">
920
- <div class="window-controls">
921
- <div class="control close"></div>
922
- <div class="control minimize"></div>
923
- <div class="control maximize"></div>
924
- </div>
925
- <div>Preview</div>
926
- </div>
927
- """)
928
-
929
- with gr.Tabs() as state_tab:
930
- with gr.Tab("empty"):
931
- gr.Markdown("Enter your prompt to begin", elem_classes="preview-content")
932
- with gr.Tab("loading"):
933
- with gr.Column(elem_classes="loading-container"):
934
- gr.Markdown("Creating visual presentation...")
935
- with gr.Tab("render"):
936
- sandbox = gr.HTML(elem_classes="preview-content")
937
- with gr.Tab("error"):
938
- gr.Markdown("An error occurred. Please try again.", elem_classes="preview-content")
939
-
940
- # 상태 변수들
941
- setting = gr.State({"system": SystemPrompt})
942
- search_mode = gr.State(False)
943
- code_output = gr.State("")
944
-
945
- # 이벤트 핸들러
946
- mode.change(
947
- fn=lambda x: x == "Generate + Web Search",
948
- inputs=[mode],
949
- outputs=[search_mode]
950
- )
951
-
952
- btn.click(
953
- fn=handle_generation,
954
- inputs=[input, setting, search_mode],
955
- outputs=[code_output, sandbox, state_tab, code_drawer]
956
- ).then(
957
- fn=update_placeholder,
958
- inputs=[],
959
- outputs=[input]
960
- )
961
-
962
- boost_btn.click(
963
- fn=handle_boost,
964
- inputs=[input],
965
- outputs=[input, state_tab]
966
- )
967
-
968
- deploy_btn.click(
969
- fn=lambda code: deploy_to_vercel(remove_code_block(code)) if code else "No code to share.",
970
- inputs=[code_output],
971
- outputs=[deploy_result]
972
- )
973
-
974
- return demo
975
-
976
- if __name__ == "__main__":
977
- try:
978
- demo_instance = Demo()
979
- demo = create_main_interface()
980
- demo.queue(
981
- default_concurrency_limit=20,
982
- status_update_rate=10,
983
- api_open=False
984
- ).launch(
985
- server_name="0.0.0.0",
986
- server_port=7860,
987
- share=False,
988
- debug=False
989
- )
990
- except Exception as e:
991
- print(f"Initialization error: {e}")
992
- raise