Spaces:
Running
Running
import os | |
import sys | |
import gradio as gr | |
import subprocess | |
import json | |
import torch | |
from pathlib import Path | |
# Set environment variables for HF Spaces | |
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" | |
os.environ["GRADIO_SERVER_PORT"] = "7860" | |
# Pre-download models cache | |
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache" | |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache" | |
# Fix potential Hunyuan Video Avatar issues | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" | |
def setup_environment(): | |
"""Setup environment for HF Spaces with WanGP v6.3""" | |
# Install additional dependencies if needed | |
dependencies = [ | |
"sageattention==1.0.6", | |
"insightface", | |
"facexlib", | |
"diffusers>=0.30.0", | |
"transformers>=4.44.0", | |
"accelerate>=0.34.0", | |
"xformers", | |
"opencv-python", | |
"imageio[ffmpeg]", | |
"moviepy", | |
"librosa", | |
"soundfile" | |
] | |
for dep in dependencies: | |
try: | |
module_name = dep.split("==")[0].split(">=")[0] | |
__import__(module_name.replace("-", "_")) | |
except ImportError: | |
print(f"Installing {dep}...") | |
subprocess.run([sys.executable, "-m", "pip", "install", dep], | |
check=True, capture_output=True) | |
def download_essential_models(): | |
"""Pre-download essential models for faster startup""" | |
try: | |
from huggingface_hub import snapshot_download | |
print("Downloading Hunyuan Video Avatar models...") | |
# Download Hunyuan Video Avatar base models | |
snapshot_download( | |
repo_id="tencent/HunyuanVideo-Avatar", | |
cache_dir="/tmp/hf_cache", | |
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], | |
ignore_patterns=["*.mp4", "*.avi", "*.mov"] # Skip demo videos | |
) | |
# Download base Hunyuan Video model | |
snapshot_download( | |
repo_id="tencent/HunyuanVideo", | |
cache_dir="/tmp/hf_cache", | |
allow_patterns=["*.safetensors", "*.json", "*.txt"], | |
ignore_patterns=["*.mp4", "*.avi"] | |
) | |
print("β Models downloaded successfully!") | |
except Exception as e: | |
print(f"Model download warning: {e}") | |
print("Models will be downloaded on-demand during first use.") | |
def create_hf_config(): | |
"""Create optimized config for HF Spaces deployment""" | |
config = { | |
"model_settings": { | |
"profile": 3, # Optimized for A10G Large | |
"quantize_transformer": True, | |
"attention_mode": "sage", | |
"compile": False, # Disable for stability on HF | |
"teacache": "2.0" | |
}, | |
"avatar_settings": { | |
"max_frames": 120, # ~5 seconds at 24fps | |
"resolution": "512x512", # Balanced quality/performance | |
"emotion_control": True, | |
"multi_character": True | |
}, | |
"memory_optimization": { | |
"enable_vae_tiling": True, | |
"enable_cpu_offload": True, | |
"max_batch_size": 1, | |
"gradient_checkpointing": True | |
}, | |
"audio_processing": { | |
"sample_rate": 16000, | |
"max_duration": 15, # seconds | |
"supported_formats": ["wav", "mp3", "m4a"] | |
} | |
} | |
config_path = "/tmp/hf_config.json" | |
with open(config_path, "w") as f: | |
json.dump(config, f, indent=2) | |
return config | |
class WanGPInterface: | |
"""WanGP Interface for HF Spaces""" | |
def __init__(self, config): | |
self.config = config | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.models_loaded = False | |
def load_models(self): | |
"""Load models on demand""" | |
if self.models_loaded: | |
return | |
try: | |
print("Loading Hunyuan Video Avatar models...") | |
# Model loading logic would go here | |
# This is a placeholder for the actual model loading | |
self.models_loaded = True | |
print("β Models loaded successfully!") | |
except Exception as e: | |
print(f"β Error loading models: {e}") | |
raise e | |
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): | |
"""Generate avatar video from audio and image""" | |
try: | |
self.load_models() | |
# Placeholder for actual generation logic | |
# This would call the real Hunyuan Video Avatar pipeline | |
return "Video generation completed! (This is a placeholder)" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def generate_video(self, prompt, duration=5, resolution="512x512"): | |
"""Generate video from text prompt""" | |
try: | |
self.load_models() | |
# Placeholder for video generation logic | |
return f"Generated video for prompt: {prompt}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def create_gradio_interface(wangp_interface): | |
"""Create Gradio interface for WanGP""" | |
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: | |
gr.HTML(""" | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<h1>π WanGP v6.3 - Hunyuan Video Avatar</h1> | |
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p> | |
</div> | |
""") | |
with gr.Tabs(): | |
# Avatar Generation Tab | |
with gr.TabItem("π Avatar Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio( | |
label="Audio Input", | |
type="filepath", | |
format="wav" | |
) | |
avatar_image = gr.Image( | |
label="Avatar Image", | |
type="filepath" | |
) | |
emotion_control = gr.Dropdown( | |
choices=["neutral", "happy", "sad", "angry", "surprised"], | |
value="neutral", | |
label="Emotion Control" | |
) | |
avatar_prompt = gr.Textbox( | |
label="Additional Prompt (Optional)", | |
placeholder="Describe additional details..." | |
) | |
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary") | |
with gr.Column(): | |
avatar_output = gr.Video(label="Generated Avatar Video") | |
avatar_status = gr.Textbox(label="Status", interactive=False) | |
# Text-to-Video Tab | |
with gr.TabItem("πΉ Text to Video"): | |
with gr.Row(): | |
with gr.Column(): | |
video_prompt = gr.Textbox( | |
label="Video Prompt", | |
placeholder="Describe the video you want to generate...", | |
lines=3 | |
) | |
duration_slider = gr.Slider( | |
minimum=2, | |
maximum=10, | |
value=5, | |
step=1, | |
label="Duration (seconds)" | |
) | |
resolution_dropdown = gr.Dropdown( | |
choices=["512x512", "768x768", "1024x1024"], | |
value="512x512", | |
label="Resolution" | |
) | |
generate_video_btn = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video") | |
video_status = gr.Textbox(label="Status", interactive=False) | |
# Event handlers | |
generate_avatar_btn.click( | |
fn=wangp_interface.generate_avatar_video, | |
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control], | |
outputs=[avatar_status] | |
) | |
generate_video_btn.click( | |
fn=wangp_interface.generate_video, | |
inputs=[video_prompt, duration_slider, resolution_dropdown], | |
outputs=[video_status] | |
) | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 20px; color: #666;"> | |
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p> | |
</div> | |
""") | |
return demo | |
if __name__ == "__main__": | |
print("π Starting WanGP v6.3 with Hunyuan Video Avatar...") | |
# Setup environment | |
setup_environment() | |
# Create configuration | |
config = create_hf_config() | |
# Download models in background | |
try: | |
download_essential_models() | |
except Exception as e: | |
print(f"Model download failed: {e}") | |
# Initialize WanGP interface | |
wangp_interface = WanGPInterface(config) | |
# Create and launch Gradio interface | |
demo = create_gradio_interface(wangp_interface) | |
print("β Setup complete! Launching application...") | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, # HF Spaces handles sharing | |
debug=False, | |
show_error=True | |
) |