import os import numpy as np from PIL import Image import torch import torchvision.transforms as transforms from transformers import CLIPImageProcessor import librosa def process_bbox(bbox, expand_radio, height, width): """ raw_vid_path: bbox: format: x1, y1, x2, y2 radio: expand radio against bbox size height,width: source image height and width """ def expand(bbox, ratio, height, width): bbox_h = bbox[3] - bbox[1] bbox_w = bbox[2] - bbox[0] expand_x1 = max(bbox[0] - ratio * bbox_w, 0) expand_y1 = max(bbox[1] - ratio * bbox_h, 0) expand_x2 = min(bbox[2] + ratio * bbox_w, width) expand_y2 = min(bbox[3] + ratio * bbox_h, height) return [expand_x1,expand_y1,expand_x2,expand_y2] def to_square(bbox_src, bbox_expend, height, width): h = bbox_expend[3] - bbox_expend[1] w = bbox_expend[2] - bbox_expend[0] c_h = (bbox_expend[1] + bbox_expend[3]) / 2 c_w = (bbox_expend[0] + bbox_expend[2]) / 2 c = min(h, w) / 2 c_src_h = (bbox_src[1] + bbox_src[3]) / 2 c_src_w = (bbox_src[0] + bbox_src[2]) / 2 s_h, s_w = 0, 0 if w < h: d = abs((h - w) / 2) s_h = min(d, abs(c_src_h-c_h)) s_h = s_h if c_src_h > c_h else s_h * (-1) else: d = abs((h - w) / 2) s_w = min(d, abs(c_src_w-c_w)) s_w = s_w if c_src_w > c_w else s_w * (-1) c_h = (bbox_expend[1] + bbox_expend[3]) / 2 + s_h c_w = (bbox_expend[0] + bbox_expend[2]) / 2 + s_w square_x1 = c_w - c square_y1 = c_h - c square_x2 = c_w + c square_y2 = c_h + c x1, y1, x2, y2 = square_x1, square_y1, square_x2, square_y2 ww = x2 - x1 hh = y2 - y1 cc_x = (x1 + x2)/2 cc_y = (y1 + y2)/2 # 1:1 ww = hh = min(ww, hh) x1, x2 = round(cc_x - ww/2), round(cc_x + ww/2) y1, y2 = round(cc_y - hh/2), round(cc_y + hh/2) return [round(x1), round(y1), round(x2), round(y2)] bbox_expend = expand(bbox, expand_radio, height=height, width=width) processed_bbox = to_square(bbox, bbox_expend, height=height, width=width) return processed_bbox def get_audio_feature(audio_path, feature_extractor): audio_input, sampling_rate = librosa.load(audio_path, sr=16000) assert sampling_rate == 16000 audio_features = [] window = 750*640 for i in range(0, len(audio_input), window): audio_feature = feature_extractor(audio_input[i:i+window], sampling_rate=sampling_rate, return_tensors="pt", ).input_features audio_features.append(audio_feature) audio_features = torch.cat(audio_features, dim=-1) return audio_features, len(audio_input) // 640 def image_audio_to_tensor(align_instance, feature_extractor, image_path, audio_path, limit=100, image_size=512, area=1.25): clip_processor = CLIPImageProcessor() to_tensor = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) mask_to_tensor = transforms.Compose([ transforms.ToTensor(), ]) imSrc_ = Image.open(image_path).convert('RGB') w, h = imSrc_.size _, _, bboxes_list = align_instance(np.array(imSrc_)[:,:,[2,1,0]], maxface=True) if len(bboxes_list) == 0: return None bboxSrc = bboxes_list[0] x1, y1, ww, hh = bboxSrc x2, y2 = x1 + ww, y1 + hh mask_img = np.zeros_like(np.array(imSrc_)) ww, hh = (x2-x1) * area, (y2-y1) * area center = [(x2+x1)//2, (y2+y1)//2] x1 = max(center[0] - ww//2, 0) y1 = max(center[1] - hh//2, 0) x2 = min(center[0] + ww//2, w) y2 = min(center[1] + hh//2, h) mask_img[int(y1):int(y2), int(x1):int(x2)] = 255 mask_img = Image.fromarray(mask_img) w, h = imSrc_.size scale = image_size / min(w, h) new_w = round(w * scale / 64) * 64 new_h = round(h * scale / 64) * 64 if new_h != h or new_w != w: imSrc = imSrc_.resize((new_w, new_h), Image.LANCZOS) mask_img = mask_img.resize((new_w, new_h), Image.LANCZOS) else: imSrc = imSrc_ clip_image = clip_processor( images=imSrc.resize((224, 224), Image.LANCZOS), return_tensors="pt" ).pixel_values[0] audio_input, audio_len = get_audio_feature(audio_path, feature_extractor) audio_len = min(limit, audio_len) sample = dict( face_mask=mask_to_tensor(mask_img), ref_img=to_tensor(imSrc), clip_images=clip_image, audio_feature=audio_input[0], audio_len=audio_len ) return sample