Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,992 Bytes
d94f82b 3544bdd a12abfd 3544bdd d94f82b a12abfd d94f82b 3544bdd a12abfd 3544bdd a12abfd 3544bdd a12abfd 3544bdd a12abfd 3544bdd d94f82b 6845a85 d94f82b 6845a85 d94f82b 6845a85 d94f82b 3544bdd d94f82b 3544bdd d94f82b 3544bdd d94f82b ea8c291 d94f82b 3544bdd a12abfd 08e8faf 3544bdd 82185ca 92aeab1 3544bdd 89d4a33 d94f82b 3544bdd a12abfd 08e8faf cb7cf23 a12abfd 08e8faf a12abfd 3544bdd d94f82b 3544bdd d94f82b 3544bdd a12abfd 3544bdd d94f82b 3544bdd 08e8faf d94f82b 3544bdd d94f82b 08e8faf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import torch.nn as nn
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET
model_path = r'ssocean/NAIP'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
global model, tokenizer
model = None
tokenizer = None
def fetch_arxiv_paper(arxiv_input):
"""Fetch paper details from arXiv URL or ID using requests."""
try:
# Extract arXiv ID from URL or use directly
if 'arxiv.org' in arxiv_input:
parsed = urlparse(arxiv_input)
path = parsed.path
arxiv_id = path.split('/')[-1].replace('.pdf', '')
else:
arxiv_id = arxiv_input.strip()
# Fetch metadata using arXiv API
api_url = f'http://export.arxiv.org/api/query?id_list={arxiv_id}'
response = requests.get(api_url)
if response.status_code != 200:
return {
"title": "",
"abstract": "",
"success": False,
"message": "Error fetching paper from arXiv API"
}
# Parse the response XML
root = ET.fromstring(response.text)
# ArXiv API uses namespaces
ns = {'arxiv': 'http://www.w3.org/2005/Atom'}
# Extract title and abstract
entry = root.find('.//arxiv:entry', ns)
if entry is None:
return {
"title": "",
"abstract": "",
"success": False,
"message": "Paper not found"
}
title = entry.find('arxiv:title', ns).text.strip()
abstract = entry.find('arxiv:summary', ns).text.strip()
return {
"title": title,
"abstract": abstract,
"success": True,
"message": "Paper fetched successfully!"
}
except Exception as e:
return {
"title": "",
"abstract": "",
"success": False,
"message": f"Error fetching paper: {str(e)}"
}
@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
title = title.replace("\n", " ").strip().replace(''',"'")
abstract = abstract.replace("\n", " ").strip().replace(''',"'")
global model, tokenizer
if model is None:
try:
# First try loading without quantization
model = AutoModelForSequenceClassification.from_pretrained(
model_path,
num_labels=1,
device_map='auto',
torch_dtype=torch.float32 if device == 'cpu' else torch.float16
)
except Exception as e:
print(f"Standard loading failed, trying without device mapping: {str(e)}")
# Fallback to basic loading
model = AutoModelForSequenceClassification.from_pretrained(
model_path,
num_labels=1,
torch_dtype=torch.float32
)
if torch.cuda.is_available():
model = model.cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()
text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
try:
inputs = tokenizer(text, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probability = torch.sigmoid(outputs.logits).item()
if probability + 0.05 >= 1.0:
return round(1, 4)
return round(probability + 0.05, 4)
except Exception as e:
print(f"Prediction error: {str(e)}")
return 0.0 # Return default value in case of error
def get_grade_and_emoji(score):
if score >= 0.900: return "AAA π"
if score >= 0.800: return "AA β"
if score >= 0.650: return "A β¨"
if score >= 0.600: return "BBB π΅"
if score >= 0.550: return "BB π"
if score >= 0.500: return "B π"
if score >= 0.400: return "CCC π"
if score >= 0.300: return "CC βοΈ"
return "C π"
example_papers = [
{
"title": "Attention Is All You Need",
"abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
"score": 0.982,
"note": "π« Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
},
{
"title": "Language Models are Few-Shot Learners",
"abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
"score": 0.956,
"note": "π Groundbreaking GPT-3 paper that demonstrated the power of large language models."
},
{
"title": "An Empirical Study of Neural Network Training Protocols",
"abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
"score": 0.623,
"note": "π Solid research paper with useful findings but more limited scope and impact."
}
]
def validate_input(title, abstract):
title = title.replace("\n", " ").strip().replace(''',"'")
abstract = abstract.replace("\n", " ").strip().replace(''',"'")
non_latin_pattern = re.compile(r'[^\u0000-\u007F]')
non_latin_in_title = non_latin_pattern.findall(title)
non_latin_in_abstract = non_latin_pattern.findall(abstract)
if len(title.strip().split(' ')) < 3:
return False, "The title must be at least 3 words long."
if len(abstract.strip().split(' ')) < 50:
return False, "The abstract must be at least 50 words long."
if len((title + abstract).split(' ')) > 1024:
return True, "Warning, the input length is approaching tokenization limits (1024) and may be truncated without further warning!"
if non_latin_in_title:
return False, f"The title contains invalid characters: {', '.join(non_latin_in_title)}. Only English letters and special symbols are allowed."
if non_latin_in_abstract:
return False, f"The abstract contains invalid characters: {', '.join(non_latin_in_abstract)}. Only English letters and special symbols are allowed."
return True, "Inputs are valid!"
def update_button_status(title, abstract):
valid, message = validate_input(title, abstract)
if not valid:
return gr.update(value="Error: " + message), gr.update(interactive=False)
return gr.update(value=message), gr.update(interactive=True)
def process_arxiv_input(arxiv_input):
"""Process arXiv input and update title/abstract fields."""
if not arxiv_input.strip():
return "", "", "Please enter an arXiv URL or ID"
result = fetch_arxiv_paper(arxiv_input)
if result["success"]:
return result["title"], result["abstract"], result["message"]
else:
return "", "", result["message"]
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-title {
text-align: center;
color: #2563eb;
font-size: 2.5rem !important;
margin-bottom: 1rem !important;
background: linear-gradient(45deg, #2563eb, #1d4ed8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.sub-title {
text-align: center;
color: #4b5563;
font-size: 1.5rem !important;
margin-bottom: 2rem !important;
}
.input-section {
background: white;
padding: 2rem;
border-radius: 1rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1);
}
.result-section {
background: #f8fafc;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.methodology-section {
background: #ecfdf5;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.example-section {
background: #fff7ed;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.grade-display {
font-size: 3rem;
text-align: center;
margin: 1rem 0;
}
.arxiv-input {
margin-bottom: 1.5rem;
padding: 1rem;
background: #f3f4f6;
border-radius: 0.5rem;
}
.arxiv-link {
color: #2563eb;
text-decoration: underline;
font-size: 0.9em;
margin-top: 0.5em;
}
.arxiv-note {
color: #666;
font-size: 0.9em;
margin-top: 0.5em;
margin-bottom: 0.5em;
}
"""
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
gr.Markdown(
"""
# Papers Impact: AI-Powered Research Impact Predictor
## https://discord.gg/openfreeai
"""
)
# Visitor Badge - λ€μ¬μ°κΈ° μμ
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
</a>""")
with gr.Row():
with gr.Column(elem_classes="input-section"):
# arXiv Input
with gr.Group(elem_classes="arxiv-input"):
gr.Markdown("### π Import from arXiv")
arxiv_input = gr.Textbox(
lines=1,
placeholder="Enter arXiv URL or ID (e.g., 2501.09751)",
label="arXiv Paper URL/ID",
value="https://arxiv.org/pdf/2502.07316" # Default example URL
)
gr.Markdown("""
<p class="arxiv-note">
Click input field to use example paper or browse papers at
<a href="https://arxiv.org" target="_blank" class="arxiv-link">arxiv.org</a>
</p>
""")
fetch_button = gr.Button("π Fetch Paper Details", variant="secondary")
gr.Markdown("### π Or Enter Paper Details Manually")
title_input = gr.Textbox(
lines=2,
placeholder="Enter Paper Title (minimum 3 words)...",
label="Paper Title"
)
abstract_input = gr.Textbox(
lines=5,
placeholder="Enter Paper Abstract (minimum 50 words)...",
label="Paper Abstract"
)
validation_status = gr.Textbox(label="βοΈ Validation Status", interactive=False)
submit_button = gr.Button("π― Predict Impact", interactive=False, variant="primary")
with gr.Column(elem_classes="result-section"):
with gr.Group():
score_output = gr.Number(label="π― Impact Score")
grade_output = gr.Textbox(label="π Grade", value="", elem_classes="grade-display")
with gr.Row(elem_classes="methodology-section"):
gr.Markdown(
"""
### π¬ Scientific Methodology
- **Training Data**: Model trained on extensive dataset of published papers from CS.CV, CS.CL(NLP), and CS.AI fields
- **Optimization**: NDCG optimization with Sigmoid activation and MSE loss function
- **Validation**: Cross-validated against historical paper impact data
- **Architecture**: Advanced transformer-based deep textual analysis
- **Metrics**: Quantitative analysis of citation patterns and research influence
"""
)
with gr.Row():
gr.Markdown(
"""
### π Rating Scale
| Grade | Score Range | Description | Indicator |
|-------|-------------|-------------|-----------|
| AAA | 0.900-1.000 | Exceptional Impact | π |
| AA | 0.800-0.899 | Very High Impact | β |
| A | 0.650-0.799 | High Impact | β¨ |
| BBB | 0.600-0.649 | Above Average Impact | π΅ |
| BB | 0.550-0.599 | Moderate Impact | π |
| B | 0.500-0.549 | Average Impact | π |
| CCC | 0.400-0.499 | Below Average Impact | π |
| CC | 0.300-0.399 | Low Impact | βοΈ |
| C | < 0.299 | Limited Impact | π |
"""
)
# Example Papers Section
with gr.Row(elem_classes="example-section"):
gr.Markdown("### π Example Papers")
for paper in example_papers:
gr.Markdown(
f"""
#### {paper['title']}
**Score**: {paper.get('score', 'N/A')} | **Grade**: {get_grade_and_emoji(paper.get('score', 0))}
{paper['abstract']}
*{paper['note']}*
---
""")
# Event handlers
title_input.change(
update_button_status,
inputs=[title_input, abstract_input],
outputs=[validation_status, submit_button]
)
abstract_input.change(
update_button_status,
inputs=[title_input, abstract_input],
outputs=[validation_status, submit_button]
)
fetch_button.click(
process_arxiv_input,
inputs=[arxiv_input],
outputs=[title_input, abstract_input, validation_status]
)
def process_prediction(title, abstract):
score = predict(title, abstract)
grade = get_grade_and_emoji(score)
return score, grade
submit_button.click(
process_prediction,
inputs=[title_input, abstract_input],
outputs=[score_output, grade_output]
)
if __name__ == "__main__":
iface.launch() |