File size: 14,732 Bytes
d94f82b
 
 
a00a5a2
e12f2d0
 
d94f82b
3544bdd
a12abfd
 
3544bdd
822a9a7
 
 
d94f82b
822a9a7
d94f82b
 
 
3544bdd
822a9a7
 
 
3544bdd
822a9a7
 
a12abfd
a00a5a2
822a9a7
a12abfd
822a9a7
a12abfd
a00a5a2
822a9a7
 
 
 
a00a5a2
 
 
 
 
 
 
822a9a7
 
 
 
a12abfd
a00a5a2
 
 
 
 
 
822a9a7
 
 
a00a5a2
 
 
 
 
 
3544bdd
a00a5a2
 
 
 
 
 
3544bdd
d94f82b
 
822a9a7
 
 
 
d94f82b
fd896e6
d94f82b
822a9a7
a00a5a2
 
822a9a7
a00a5a2
822a9a7
a00a5a2
 
 
822a9a7
 
a00a5a2
 
 
822a9a7
a00a5a2
d94f82b
822a9a7
a00a5a2
fd896e6
822a9a7
 
fd896e6
1a19be7
a00a5a2
 
 
 
 
822a9a7
 
 
 
a00a5a2
 
 
822a9a7
d94f82b
 
822a9a7
d94f82b
 
 
 
 
 
 
 
 
 
 
822a9a7
 
 
 
8cbcecb
822a9a7
8cbcecb
822a9a7
 
 
 
 
 
d94f82b
 
822a9a7
d94f82b
822a9a7
 
d94f82b
3544bdd
822a9a7
 
 
3544bdd
e12f2d0
a00a5a2
 
 
822a9a7
3544bdd
822a9a7
3544bdd
822a9a7
8cbcecb
 
 
 
 
 
 
 
 
a00a5a2
 
 
 
 
 
8cbcecb
a00a5a2
8cbcecb
 
822a9a7
8cbcecb
 
 
 
 
 
 
a00a5a2
 
 
 
 
 
 
8cbcecb
 
 
 
 
 
 
 
 
 
 
a00a5a2
e12f2d0
a00a5a2
8cbcecb
 
 
 
 
 
a00a5a2
8cbcecb
 
a00a5a2
8cbcecb
 
 
 
3544bdd
1a19be7
822a9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3544bdd
a00a5a2
 
 
 
 
 
 
 
 
89d4a33
d94f82b
3544bdd
822a9a7
e12f2d0
a00a5a2
e12f2d0
 
a00a5a2
 
e12f2d0
 
822a9a7
 
 
 
 
 
 
 
e12f2d0
822a9a7
a00a5a2
d94f82b
 
a00a5a2
e12f2d0
3334620
d94f82b
 
a00a5a2
e12f2d0
3334620
a00a5a2
e12f2d0
822a9a7
3544bdd
a00a5a2
 
 
3544bdd
 
a00a5a2
 
 
 
 
 
 
 
 
 
3544bdd
a00a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94f82b
3544bdd
a00a5a2
3544bdd
a00a5a2
 
822a9a7
a00a5a2
 
 
 
 
 
d94f82b
822a9a7
a00a5a2
 
 
 
 
 
 
 
 
 
822a9a7
 
a00a5a2
 
 
 
 
d94f82b
822a9a7
a00a5a2
 
 
 
d94f82b
a00a5a2
 
 
 
 
d94f82b
 
1a19be7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import gradio as gr
import spaces
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import torch.nn as nn
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET

# Model repository path and device selection
model_path = "ssocean/NAIP"
device = "cuda" if torch.cuda.is_available() else "cpu"

# Global model/tokenizer variables
model = None
tokenizer = None

def fetch_arxiv_paper(arxiv_input):
    """
    Fetch paper details (title, abstract) from an arXiv URL or ID using requests.
    """
    try:
        # If user passed a full arxiv.org link, parse out the ID
        if "arxiv.org" in arxiv_input:
            parsed = urlparse(arxiv_input)
            path = parsed.path
            arxiv_id = path.split("/")[-1].replace(".pdf", "")
        else:
            # Otherwise just use the raw ID
            arxiv_id = arxiv_input.strip()

        # ArXiv API query
        api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
        resp = requests.get(api_url)
        if resp.status_code != 200:
            return {
                "title": "",
                "abstract": "",
                "success": False,
                "message": "Error fetching paper from arXiv API"
            }

        # Parse XML response
        root = ET.fromstring(resp.text)
        ns = {"arxiv": "http://www.w3.org/2005/Atom"}
        entry = root.find(".//arxiv:entry", ns)
        if entry is None:
            return {
                "title": "",
                "abstract": "",
                "success": False,
                "message": "Paper not found"
            }

        title = entry.find("arxiv:title", ns).text.strip()
        abstract = entry.find("arxiv:summary", ns).text.strip()
        return {
            "title": title,
            "abstract": abstract,
            "success": True,
            "message": "Paper fetched successfully!"
        }
    except Exception as e:
        return {
            "title": "",
            "abstract": "",
            "success": False,
            "message": f"Error fetching paper: {e}"
        }

@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
    """
    Predict a normalized academic impact score (0–1) given the paper title & abstract.
    Loads the model once globally, then uses it for inference.
    """
    global model, tokenizer

    if model is None:
        # Load model config, disable quantization, and set number of labels if needed
        config = AutoConfig.from_pretrained(model_path)
        config.quantization_config = None
        config.num_labels = 1  # For classification/logit output

        # IMPORTANT: Do not pass num_labels directly into from_pretrained for LLaMA-based models
        model = AutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            torch_dtype=torch.float32,  # Use full-precision float32
            device_map=None,           # We'll move it manually
            low_cpu_mem_usage=False
        )
        model.to(device)
        model.eval()

        tokenizer = AutoTokenizer.from_pretrained(model_path)

    text = (
        f"Given a certain paper,\n"
        f"Title: {title.strip()}\n"
        f"Abstract: {abstract.strip()}\n"
        f"Predict its normalized academic impact (0~1):"
    )

    try:
        inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        with torch.no_grad():
            output = model(**inputs)
        logits = output.logits
        prob = torch.sigmoid(logits).item()
        score = min(1.0, prob + 0.05)  # +0.05 offset, capped at 1.0
        return round(score, 4)
    except Exception as e:
        print(f"Prediction error: {e}")
        return 0.0  # Return 0 in case of any error

def get_grade_and_emoji(score):
    """Convert a 0–1 score into a tier grade with emoji indicator."""
    if score >= 0.900: return "AAA 🌟"
    if score >= 0.800: return "AA ⭐"
    if score >= 0.650: return "A ✨"
    if score >= 0.600: return "BBB πŸ”΅"
    if score >= 0.550: return "BB πŸ“˜"
    if score >= 0.500: return "B πŸ“–"
    if score >= 0.400: return "CCC πŸ“"
    if score >= 0.300: return "CC ✏️"
    return "C πŸ“‘"

def validate_input(title, abstract):
    """
    Ensure title >=3 words, abstract >=50 words, and only ASCII chars.
    """
    non_ascii = re.compile(r"[^\x00-\x7F]")
    if len(title.split()) < 3:
        return False, "Title must be at least 3 words."
    if len(abstract.split()) < 50:
        return False, "Abstract must be at least 50 words."
    if non_ascii.search(title):
        return False, "Title contains non-ASCII characters."
    if non_ascii.search(abstract):
        return False, "Abstract contains non-ASCII characters."
    return True, "Inputs look good."

def update_button_status(title, abstract):
    valid, msg = validate_input(title, abstract)
    if not valid:
        return gr.update(value="Error: " + msg), gr.update(interactive=False)
    return gr.update(value=msg), gr.update(interactive=True)

def process_arxiv_input(arxiv_input):
    """
    Helper to fill in title/abstract fields from an arXiv link/ID.
    """
    if not arxiv_input.strip():
        return "", "", "Please enter an arXiv URL or ID"
    result = fetch_arxiv_paper(arxiv_input)
    if result["success"]:
        return result["title"], result["abstract"], result["message"]
    return "", "", result["message"]

# Custom CSS for styling
css = """
.gradio-container { font-family: Arial, sans-serif; }
.main-title {
    text-align: center;
    color: #2563eb;
    font-size: 2.5rem !important;
    margin-bottom: 1rem !important;
    background: linear-gradient(45deg, #2563eb, #1d4ed8);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
.sub-title {
    text-align: center;
    color: #4b5563;
    font-size: 1.5rem !important;
    margin-bottom: 2rem !important;
}
.input-section {
    background: white;
    padding: 2rem;
    border-radius: 1rem;
    box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);
}
.result-section {
    background: #f8fafc;
    padding: 2rem;
    border-radius: 1rem;
    margin-top: 2rem;
}
.methodology-section {
    background: #ecfdf5;
    padding: 2rem;
    border-radius: 1rem;
    margin-top: 2rem;
}
.example-section {
    background: #fff7ed;
    padding: 2rem;
    border-radius: 1rem;
    margin-top: 2rem;
}
.grade-display {
    font-size: 3rem;
    text-align: center;
    margin: 1rem 0;
}
.arxiv-input {
    margin-bottom: 1.5rem;
    padding: 1rem;
    background: #f3f4f6;
    border-radius: 0.5rem;
}
.arxiv-link {
    color: #2563eb;
    text-decoration: underline;
    font-size: 0.9em;
    margin-top: 0.5em;
}
.arxiv-note {
    color: #666;
    font-size: 0.9em;
    margin-top: 0.5em;
    margin-bottom: 0.5em;
}
"""

# Example papers
example_papers = [
    {
        "title": "Attention Is All You Need",
        "abstract": (
            "The dominant sequence transduction models are based on complex recurrent or "
            "convolutional neural networks that include an encoder and a decoder. The best performing "
            "models also connect the encoder and decoder through an attention mechanism. We propose a "
            "new simple network architecture, the Transformer, based solely on attention mechanisms, "
            "dispensing with recurrence and convolutions entirely. Experiments on two machine "
            "translation tasks show these models to be superior in quality while being more "
            "parallelizable and requiring significantly less time to train."
        ),
        "score": 0.982,
        "note": "πŸ’« Revolutionary paper that introduced the Transformer architecture."
    },
    {
        "title": "Language Models are Few-Shot Learners",
        "abstract": (
            "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by "
            "pre-training on a large corpus of text followed by fine-tuning on a specific task. While "
            "typically task-agnostic in architecture, this method still requires task-specific "
            "fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans "
            "can generally perform a new language task from only a few examples or from simple "
            "instructions - something which current NLP systems still largely struggle to do. Here we "
            "show that scaling up language models greatly improves task-agnostic, few-shot "
            "performance, sometimes even reaching competitiveness with prior state-of-the-art "
            "fine-tuning approaches."
        ),
        "score": 0.956,
        "note": "πŸš€ Groundbreaking GPT-3 paper that demonstrated the power of large language models."
    },
    {
        "title": "An Empirical Study of Neural Network Training Protocols",
        "abstract": (
            "This paper presents a comparative analysis of different training protocols for neural "
            "networks across various architectures. We examine the effects of learning rate schedules, "
            "batch size selection, and optimization algorithms on model convergence and final "
            "performance. Our experiments span multiple datasets and model sizes, providing practical "
            "insights for deep learning practitioners."
        ),
        "score": 0.623,
        "note": "πŸ“š Solid research paper with useful findings but more limited scope and impact."
    }
]

# Build Gradio interface
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
    gr.Markdown(
        """
        # Papers Impact: AI-Powered Research Impact Predictor 
        ## https://discord.gg/openfreeai
        """
    )
    gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
</a>""")

    with gr.Row():
        with gr.Column(elem_classes="input-section"):
            # arXiv import group
            with gr.Group(elem_classes="arxiv-input"):
                gr.Markdown("### πŸ“‘ Import from arXiv")
                arxiv_input = gr.Textbox(
                    lines=1,
                    placeholder="Enter arXiv URL or ID (e.g., 2504.11651)",
                    label="arXiv Paper URL/ID",
                    value="2504.11651"
                )
                gr.Markdown(
                    """
                    <p class="arxiv-note">
                      Click input field to use example paper or browse papers at 
                      <a href="https://arxiv.org" target="_blank" class="arxiv-link">arxiv.org</a>
                    </p>
                    """
                )
                fetch_button = gr.Button("πŸ” Fetch Paper Details", variant="secondary")

            gr.Markdown("### πŸ“ Or Enter Paper Details Manually")
            title_input = gr.Textbox(
                lines=2,
                placeholder="Enter Paper Title (minimum 3 words)...",
                label="Paper Title"
            )
            abstract_input = gr.Textbox(
                lines=5,
                placeholder="Enter Paper Abstract (minimum 50 words)...",
                label="Paper Abstract"
            )
            validation_status = gr.Textbox(label="βœ”οΈ Validation Status", interactive=False)
            submit_button = gr.Button("🎯 Predict Impact", interactive=False, variant="primary")

        with gr.Column(elem_classes="result-section"):
            with gr.Group():
                score_output = gr.Number(label="🎯 Impact Score")
                grade_output = gr.Textbox(label="πŸ† Grade", value="", elem_classes="grade-display")

    with gr.Row(elem_classes="methodology-section"):
        gr.Markdown(
            """
            ### πŸ”¬ Scientific Methodology
            - **Training Data**: Model trained on extensive dataset of published papers from CS.CV, CS.CL(NLP), and CS.AI fields
            - **Optimization**: NDCG optimization with Sigmoid activation and MSE loss function
            - **Validation**: Cross-validated against historical paper impact data
            - **Architecture**: Advanced transformer-based deep textual analysis
            - **Metrics**: Quantitative analysis of citation patterns and research influence
            """
        )

    with gr.Row():
        gr.Markdown(
            """
            ### πŸ“Š Rating Scale
            | Grade | Score Range | Description | Indicator |
            |-------|-------------|-------------|-----------|
            | AAA | 0.900-1.000 | Exceptional Impact | 🌟 |
            | AA | 0.800-0.899 | Very High Impact | ⭐ |
            | A | 0.650-0.799 | High Impact | ✨ |
            | BBB | 0.600-0.649 | Above Average Impact | πŸ”΅ |
            | BB | 0.550-0.599 | Moderate Impact | πŸ“˜ |
            | B | 0.500-0.549 | Average Impact | πŸ“– |
            | CCC | 0.400-0.499 | Below Average Impact | πŸ“ |
            | CC | 0.300-0.399 | Low Impact | ✏️ |
            | C | < 0.299 | Limited Impact | πŸ“‘ |
            """
        )

    with gr.Row(elem_classes="example-section"):
        gr.Markdown("### πŸ“‹ Example Papers")
        for paper in example_papers:
            gr.Markdown(
                f"""
                #### {paper['title']}
                **Score**: {paper.get('score', 'N/A')} | **Grade**: {get_grade_and_emoji(paper.get('score', 0))}
                {paper['abstract']}
                *{paper['note']}*
                ---
                """
            )

    # Validate button status on input changes
    title_input.change(
        update_button_status,
        inputs=[title_input, abstract_input],
        outputs=[validation_status, submit_button]
    )
    abstract_input.change(
        update_button_status,
        inputs=[title_input, abstract_input],
        outputs=[validation_status, submit_button]
    )

    # Fetch from arXiv
    fetch_button.click(
        process_arxiv_input,
        inputs=[arxiv_input],
        outputs=[title_input, abstract_input, validation_status]
    )

    # Predict callback
    def process_prediction(title, abstract):
        score = predict(title, abstract)
        grade = get_grade_and_emoji(score)
        return score, grade

    submit_button.click(
        process_prediction,
        inputs=[title_input, abstract_input],
        outputs=[score_output, grade_output]
    )

if __name__ == "__main__":
    iface.launch()