openfree commited on
Commit
70d5738
·
verified ·
1 Parent(s): 2329184

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -680
app.py DELETED
@@ -1,680 +0,0 @@
1
- import spaces
2
- import json
3
- import subprocess
4
- import os
5
- from llama_cpp import Llama
6
- from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
7
- from llama_cpp_agent.providers import LlamaCppPythonProvider
8
- from llama_cpp_agent.chat_history import BasicChatHistory
9
- from llama_cpp_agent.chat_history.messages import Roles
10
- import gradio as gr
11
- from huggingface_hub import hf_hub_download
12
- import tempfile
13
- from typing import List, Tuple, Optional
14
-
15
- # PDF 처리 라이브러리 조건부 import
16
- try:
17
- from docling.document_converter import DocumentConverter
18
- DOCLING_AVAILABLE = True
19
- except ImportError:
20
- DOCLING_AVAILABLE = False
21
- print("Docling not available, using alternative PDF processing")
22
- try:
23
- import PyPDF2
24
- import pdfplumber
25
- except ImportError:
26
- print("Warning: PDF processing libraries not fully installed")
27
-
28
- # 환경 변수에서 HF_TOKEN 가져오기
29
- HF_TOKEN = os.getenv("HF_TOKEN")
30
-
31
- # 전역 변수 초기화 (중요!)
32
- llm = None
33
- llm_model = None
34
- document_context = "" # PDF에서 추출한 문서 컨텍스트 저장
35
- document_filename = "" # 현재 로드된 문서의 파일명
36
-
37
- print("Global variables initialized")
38
- print(f"document_context initial value: '{document_context}'")
39
- print(f"document_filename initial value: '{document_filename}'")
40
-
41
- # 모델 이름과 경로를 정의
42
- MISTRAL_MODEL_NAME = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf"
43
-
44
- # 모델 다운로드 (HF_TOKEN 사용)
45
- model_path = hf_hub_download(
46
- repo_id="ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503",
47
- filename=MISTRAL_MODEL_NAME,
48
- local_dir="./models",
49
- token=HF_TOKEN
50
- )
51
-
52
- print(f"Downloaded model path: {model_path}")
53
-
54
- css = """
55
- .bubble-wrap {
56
- padding-top: calc(var(--spacing-xl) * 3) !important;
57
- }
58
- .message-row {
59
- justify-content: space-evenly !important;
60
- width: 100% !important;
61
- max-width: 100% !important;
62
- margin: calc(var(--spacing-xl)) 0 !important;
63
- padding: 0 calc(var(--spacing-xl) * 3) !important;
64
- }
65
- .flex-wrap.user {
66
- border-bottom-right-radius: var(--radius-lg) !important;
67
- }
68
- .flex-wrap.bot {
69
- border-bottom-left-radius: var(--radius-lg) !important;
70
- }
71
- .message.user{
72
- padding: 10px;
73
- }
74
- .message.bot{
75
- text-align: right;
76
- width: 100%;
77
- padding: 10px;
78
- border-radius: 10px;
79
- }
80
- .message-bubble-border {
81
- border-radius: 6px !important;
82
- }
83
- .message-buttons {
84
- justify-content: flex-end !important;
85
- }
86
- .message-buttons-left {
87
- align-self: end !important;
88
- }
89
- .message-buttons-bot, .message-buttons-user {
90
- right: 10px !important;
91
- left: auto !important;
92
- bottom: 2px !important;
93
- }
94
- .dark.message-bubble-border {
95
- border-color: #343140 !important;
96
- }
97
- .dark.user {
98
- background: #1e1c26 !important;
99
- }
100
- .dark.assistant.dark, .dark.pending.dark {
101
- background: #16141c !important;
102
- }
103
- .upload-container {
104
- margin-bottom: 20px;
105
- padding: 15px;
106
- border: 2px dashed #666;
107
- border-radius: 10px;
108
- background-color: #f0f0f0;
109
- }
110
- .dark .upload-container {
111
- background-color: #292733;
112
- border-color: #444;
113
- }
114
- """
115
-
116
- def get_messages_formatter_type(model_name):
117
- if "Mistral" in model_name or "BitSix" in model_name:
118
- return MessagesFormatterType.MISTRAL # CHATML 대신 MISTRAL 형식 사용
119
- else:
120
- raise ValueError(f"Unsupported model: {model_name}")
121
-
122
- @spaces.GPU
123
- def convert_pdf_to_markdown(file):
124
- """Convert PDF file to Markdown"""
125
- global document_context, document_filename
126
-
127
- if file is None:
128
- return "No file uploaded.", {}
129
-
130
- try:
131
- print(f"\n=== PDF Conversion Started ===")
132
- print(f"File path: {file.name}")
133
-
134
- # DocumentConverter 인스턴스 생성
135
- converter = DocumentConverter()
136
-
137
- # 파일 변환
138
- result = converter.convert(file.name)
139
-
140
- # Markdown으로 내보내기
141
- markdown_content = result.document.export_to_markdown()
142
-
143
- # 문서 컨텍스트 업데이트 (중요!)
144
- document_context = markdown_content
145
- document_filename = os.path.basename(file.name)
146
-
147
- # 메타데이터 추출
148
- metadata = {
149
- "filename": document_filename,
150
- "conversion_status": "success",
151
- "content_length": len(markdown_content),
152
- "preview": markdown_content[:500] + "..." if len(markdown_content) > 500 else markdown_content
153
- }
154
-
155
- print(f"✅ PDF conversion successful!")
156
- print(f"📄 Filename: {document_filename}")
157
- print(f"📏 Document length: {len(markdown_content)} characters")
158
- print(f"📝 Document preview (first 300 chars):\n{markdown_content[:300]}...")
159
- print(f"=== PDF Conversion Complete ===\n")
160
-
161
- # 전역 변수 확인 및 강제 설정
162
- print(f"\n=== Before setting global variables ===")
163
- print(f"global document_context length: {len(document_context)}")
164
- print(f"global document_filename: {document_filename}")
165
-
166
- # globals() 함수를 사용하여 강제로 전역 변수 설정
167
- globals()['document_context'] = markdown_content
168
- globals()['document_filename'] = document_filename
169
-
170
- print(f"\n=== After setting global variables ===")
171
- print(f"global document_context length: {len(globals()['document_context'])}")
172
- print(f"global document_filename: {globals()['document_filename']}")
173
-
174
- return markdown_content, metadata
175
-
176
- except Exception as e:
177
- error_msg = f"Error during PDF conversion: {str(e)}"
178
- print(f"❌ {error_msg}")
179
- document_context = ""
180
- document_filename = ""
181
- return error_msg, {"error": str(e)}
182
-
183
- def find_relevant_chunks(document, query, chunk_size=1500, overlap=300):
184
- """Find relevant chunks from document based on query"""
185
- if not document:
186
- return ""
187
-
188
- print(f"Finding relevant chunks for query: {query}")
189
-
190
- # 간단한 키워드 기반 검색
191
- query_words = query.lower().split()
192
- chunks = []
193
-
194
- # 문서를 청크로 나누기
195
- for i in range(0, len(document), chunk_size - overlap):
196
- chunk = document[i:i + chunk_size]
197
- chunks.append((i, chunk))
198
-
199
- print(f"Document split into {len(chunks)} chunks")
200
-
201
- # 각 청크의 관련성 점수 계산
202
- scored_chunks = []
203
- for idx, chunk in chunks:
204
- chunk_lower = chunk.lower()
205
- score = sum(1 for word in query_words if word in chunk_lower)
206
- if score > 0:
207
- scored_chunks.append((score, idx, chunk))
208
-
209
- # 상위 2개 청크 선택 (메모리 절약)
210
- scored_chunks.sort(reverse=True, key=lambda x: x[0])
211
- relevant_chunks = scored_chunks[:2]
212
-
213
- if relevant_chunks:
214
- result = ""
215
- for score, idx, chunk in relevant_chunks:
216
- result += f"\n[Extracted from position {idx} - relevance score: {score}]\n{chunk}\n"
217
- print(f"Found {len(relevant_chunks)} relevant chunks")
218
- return result
219
- else:
220
- # 관련 청크를 찾지 못한 경우 문서 시작 부분 반환
221
- print("No relevant chunks found, returning document beginning")
222
- return document[:2000]
223
-
224
- @spaces.GPU(duration=120)
225
- def respond(
226
- message,
227
- history: list[dict],
228
- system_message,
229
- max_tokens,
230
- temperature,
231
- top_p,
232
- top_k,
233
- repeat_penalty,
234
- ):
235
- global llm, llm_model
236
-
237
- # globals()를 사용하여 전역 변수에 접근
238
- document_context = globals().get('document_context', '')
239
- document_filename = globals().get('document_filename', '')
240
-
241
- # 디버깅을 위한 상세 로그
242
- print(f"\n=== RESPOND Function Started ===")
243
- print(f"User message: {message}")
244
- print(f"Document context exists: {bool(document_context)}")
245
- if document_context:
246
- print(f"Document length: {len(document_context)}")
247
- print(f"Document filename: {document_filename}")
248
- print(f"Document preview (first 100 chars): {document_context[:100]}...")
249
- else:
250
- print("⚠️ document_context is empty!")
251
- print(f"globals() keys (first 20): {list(globals().keys())[:20]}...")
252
-
253
- chat_template = get_messages_formatter_type(MISTRAL_MODEL_NAME)
254
-
255
- # 모델 파일 경로 확인
256
- model_path_local = os.path.join("./models", MISTRAL_MODEL_NAME)
257
-
258
- if llm is None or llm_model != MISTRAL_MODEL_NAME:
259
- print("Loading LLM model...")
260
- llm = Llama(
261
- model_path=model_path_local,
262
- flash_attn=True,
263
- n_gpu_layers=81,
264
- n_batch=1024,
265
- n_ctx=16384, # 컨텍스트 크기
266
- verbose=True # 디버깅을 위한 상세 로그
267
- )
268
- llm_model = MISTRAL_MODEL_NAME
269
- print("LLM model loaded successfully!")
270
-
271
- provider = LlamaCppPythonProvider(llm)
272
-
273
- # 기본 시스템 메시지 사용
274
- system_prompt = system_message
275
-
276
- # 문서 컨텍스트가 있으면 시스템 메시지와 사용자 메시지 모두에 포함
277
- if document_context and len(document_context) > 0:
278
- doc_length = len(document_context)
279
- print(f"📄 Including document context in message: {doc_length} characters")
280
-
281
- # 시스템 메시지에도 문서 정보 추가
282
- system_prompt += f"\n\nCurrently loaded document: '{document_filename}'. You must reference this document content when answering all user questions."
283
-
284
- # 문서 내용을 적절한 크기로 제한
285
- max_doc_length = 4000 # 최대 4000자로 제한
286
- if doc_length > max_doc_length:
287
- # 문서가 너무 긴 경우 처음과 끝 부분만 포함
288
- doc_snippet = document_context[:2000] + "\n\n[... middle content omitted ...]\n\n" + document_context[-1500:]
289
- enhanced_message = f"""Uploaded PDF document information:
290
- - Filename: {document_filename}
291
- - Document length: {doc_length} characters
292
-
293
- Document content (excerpt):
294
- {doc_snippet}
295
-
296
- User question: {message}
297
-
298
- Please answer the question based on the document above."""
299
- else:
300
- # 짧은 문서는 전체 포함
301
- enhanced_message = f"""Uploaded PDF document information:
302
- - Filename: {document_filename}
303
- - Document length: {doc_length} characters
304
-
305
- Document content:
306
- {document_context}
307
-
308
- User question: {message}
309
-
310
- Please answer the question based on the document above."""
311
-
312
- print(f"Enhanced message length: {len(enhanced_message)}")
313
- print(f"Message preview (first 300 chars):\n{enhanced_message[:300]}...")
314
-
315
- # 디버그: 최종 메시지 파일로 저장 (확인용)
316
- with open("debug_last_message.txt", "w", encoding="utf-8") as f:
317
- f.write(f"=== Debug Information ===\n")
318
- f.write(f"Document length: {len(document_context)}\n")
319
- f.write(f"Filename: {document_filename}\n")
320
- f.write(f"User question: {message}\n")
321
- f.write(f"\n=== Message to be sent ===\n")
322
- f.write(enhanced_message)
323
- else:
324
- # 문서가 없는 경우
325
- enhanced_message = message
326
- if any(keyword in message.lower() for keyword in ["document", "pdf", "upload", "file", "content", "summary", "문서", "요약"]):
327
- enhanced_message = f"{message}\n\n[System message: No PDF document is currently uploaded. Please upload a PDF file first.]"
328
- print("Document-related question but no document loaded")
329
-
330
- # 디버그 메시지
331
- print("⚠️ Warning: document_context is empty!")
332
- print(f"document_context type: {type(document_context)}")
333
- print(f"document_context value: {repr(document_context)}")
334
- print(f"document_filename: {document_filename}")
335
-
336
- settings = provider.get_provider_default_settings()
337
- settings.temperature = temperature
338
- settings.top_k = top_k
339
- settings.top_p = top_p
340
- settings.max_tokens = max_tokens
341
- settings.repeat_penalty = repeat_penalty
342
- settings.stream = True
343
-
344
- # 시스템 프롬프트에 문서 내용 직접 포함 (문서가 있는 경우)
345
- if document_context and len(document_context) > 0:
346
- doc_snippet = document_context[:3000] # 처음 3000자만 사용
347
- enhanced_system_prompt = f"""{system_prompt}
348
-
349
- Currently loaded PDF document:
350
- Filename: {document_filename}
351
- Document content:
352
- {doc_snippet}
353
- {'' if len(document_context) <= 3000 else '... (remainder omitted)'}
354
-
355
- Answer user questions based on the document content above."""
356
-
357
- # 사용자 메시지는 단순하게
358
- final_message = message
359
- else:
360
- enhanced_system_prompt = system_prompt
361
- final_message = enhanced_message
362
-
363
- agent = LlamaCppAgent(
364
- provider,
365
- system_prompt=enhanced_system_prompt,
366
- predefined_messages_formatter_type=chat_template,
367
- debug_output=True
368
- )
369
-
370
- messages = BasicChatHistory()
371
-
372
- # 이전 대화 기록 추가 (수정됨)
373
- for i in range(0, len(history)):
374
- # 현재 메시지는 제외
375
- if i < len(history) - 1 and history[i][1] is not None:
376
- # 사용자 메시지
377
- messages.add_message({
378
- 'role': Roles.user,
379
- 'content': history[i][0]
380
- })
381
- # 어시스턴트 메시지
382
- messages.add_message({
383
- 'role': Roles.assistant,
384
- 'content': history[i][1]
385
- })
386
-
387
- print(f"Sending final message: {final_message}")
388
-
389
- # 스트림 응답 생성
390
- try:
391
- stream = agent.get_chat_response(
392
- final_message, # 단순한 메시지 사용
393
- llm_sampling_settings=settings,
394
- chat_history=messages,
395
- returns_streaming_generator=True,
396
- print_output=False
397
- )
398
-
399
- outputs = ""
400
- for output in stream:
401
- outputs += output
402
- yield outputs
403
- except Exception as e:
404
- print(f"Error during stream generation: {e}")
405
- yield "Sorry, an error occurred while generating the response. Please try again."
406
-
407
- def clear_document_context():
408
- """Clear document context"""
409
- global document_context, document_filename
410
- document_context = ""
411
- document_filename = ""
412
- return "📭 Document context has been cleared. Please upload a new PDF."
413
-
414
- def check_document_status():
415
- """Check current document status"""
416
- global document_context, document_filename
417
- print(f"\n=== Document Status Check ===")
418
- print(f"document_context type: {type(document_context)}")
419
- print(f"document_context length: {len(document_context) if document_context else 0}")
420
- print(f"document_filename: '{document_filename}'")
421
-
422
- if document_context and len(document_context) > 0:
423
- status = f"✅ Document loaded successfully.\n📄 Filename: {document_filename}\n📏 Document length: {len(document_context):,} characters"
424
- print(f"Document first 100 chars: {document_context[:100]}")
425
- return status
426
- else:
427
- return "📭 No document loaded. Please upload a PDF file."
428
-
429
- # Gradio 인터페이스 구성
430
- with gr.Blocks(theme=gr.themes.Soft(
431
- primary_hue="blue",
432
- secondary_hue="cyan",
433
- neutral_hue="gray",
434
- font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
435
- ).set(
436
- body_background_fill="#f8f9fa",
437
- block_background_fill="#ffffff",
438
- block_border_width="1px",
439
- block_title_background_fill="#e9ecef",
440
- input_background_fill="#ffffff",
441
- button_secondary_background_fill="#e9ecef",
442
- border_color_accent="#dee2e6",
443
- border_color_primary="#ced4da",
444
- background_fill_secondary="#f8f9fa",
445
- color_accent_soft="transparent",
446
- code_background_fill="#f1f3f5",
447
- ), css=css) as demo:
448
-
449
- gr.Markdown("# On-Premise Optimized 'LLM+RAG Model' Service by VIDraft")
450
- gr.Markdown("🔍 **Advanced document analysis with state-of-the-art language model for accurate Q&A based on your PDF content**")
451
- gr.Markdown("🌐 **Supports both English and Korean languages seamlessly with context-aware responses**")
452
- gr.Markdown("💡 **How to use**: 1) Upload PDF below → 2) Ask questions about the document → 3) Get AI-powered answers")
453
-
454
- # 채팅 인터페이스를 위쪽에 배치
455
- with gr.Row():
456
- with gr.Column():
457
- # 채팅 인터페이스
458
- chatbot = gr.Chatbot(elem_id="chatbot", height=500)
459
- msg = gr.Textbox(
460
- label="Message Input",
461
- placeholder="Enter your question... (Upload a PDF to ask questions about its content)",
462
- lines=2
463
- )
464
- with gr.Row():
465
- submit = gr.Button("Send", variant="primary")
466
- clear_chat = gr.Button("Clear Chat")
467
-
468
- # 예제를 중간에 배치 - 영어와 한국어 예제 모두 포함
469
- gr.Examples(
470
- examples=[
471
- ["What is this document about?"],
472
- ["Please summarize the main contents of the uploaded PDF document."],
473
- ["What are the key dates or deadlines mentioned in the document?"],
474
- ["What are the 3 most important key points in this document?"],
475
- ["이 문서의 주요 내용을 요약해주세요."],
476
- ["문서에 나온 중요한 일정이나 날짜를 알려주세요."],
477
- ["이 문서에서 가장 중요한 3가지 핵심 포인트는 무엇인가요?"]
478
- ],
479
- inputs=msg
480
- )
481
-
482
- # PDF 업로드 섹션을 아래쪽에 배치
483
- with gr.Accordion("📄 PDF Document Upload", open=True):
484
- with gr.Row():
485
- with gr.Column(scale=1):
486
- file_input = gr.File(
487
- label="Select PDF Document",
488
- file_types=[".pdf"],
489
- type="filepath"
490
- )
491
- with gr.Row():
492
- convert_button = gr.Button("Convert Document", variant="primary")
493
- clear_button = gr.Button("Clear Document", variant="secondary")
494
- test_button = gr.Button("Test Document", variant="secondary")
495
-
496
- status_text = gr.Textbox(
497
- label="Document Status",
498
- interactive=False,
499
- value=check_document_status(),
500
- lines=3
501
- )
502
-
503
- with gr.Column(scale=1):
504
- with gr.Accordion("Converted Document Preview", open=False):
505
- converted_text = gr.Textbox(
506
- label="Markdown Conversion Result",
507
- lines=10,
508
- max_lines=20,
509
- interactive=False
510
- )
511
- metadata_output = gr.JSON(label="Metadata")
512
-
513
- # 고급 설정을 가장 아래에 배치
514
- with gr.Accordion("⚙️ Advanced Settings", open=False):
515
- system_message = gr.Textbox(
516
- value="You are an AI assistant that can answer in both English and Korean. When a PDF document is provided, analyze its content accurately and provide detailed answers. Respond in the same language as the user's question.",
517
- label="System Message",
518
- lines=3
519
- )
520
- max_tokens = gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max Tokens")
521
- temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature (lower = more consistent)")
522
- top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p")
523
- top_k = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
524
- repeat_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
525
-
526
- # 이벤트 핸들러
527
- def user_submit(message, history):
528
- return "", history + [[message, None]]
529
-
530
- def bot_response(history, system_msg, max_tok, temp, top_p_val, top_k_val, rep_pen):
531
- if history and history[-1][1] is None:
532
- user_message = history[-1][0]
533
-
534
- # 디버깅: 문서 컨텍스트 상태 확인
535
- global document_context, document_filename
536
- print(f"\n=== BOT RESPONSE Started ===")
537
- print(f"User message: {user_message}")
538
- if document_context:
539
- print(f"📄 Document context active: {document_filename} ({len(document_context)} chars)")
540
- print(f"Document preview (first 200 chars): {document_context[:200]}...")
541
- else:
542
- print("📭 No document context")
543
-
544
- # 단순한 형식 사용 - [user_message, assistant_message]
545
- previous_history = []
546
- for i in range(len(history) - 1):
547
- if history[i][1] is not None:
548
- previous_history.append({
549
- "user": history[i][0],
550
- "assistant": history[i][1]
551
- })
552
-
553
- print(f"Previous conversations: {len(previous_history)}")
554
-
555
- # 문서가 있는 경우 특별 처리
556
- if document_context and len(document_context) > 0:
557
- print(f"📄 Generating document-based response... (Document length: {len(document_context)})")
558
-
559
- bot_message = ""
560
- try:
561
- for token in respond(
562
- user_message,
563
- previous_history,
564
- system_msg,
565
- max_tok,
566
- temp,
567
- top_p_val,
568
- top_k_val,
569
- rep_pen
570
- ):
571
- bot_message = token
572
- history[-1][1] = bot_message
573
- yield history
574
- except Exception as e:
575
- print(f"❌ Error during response generation: {e}")
576
- import traceback
577
- traceback.print_exc()
578
- history[-1][1] = "Sorry, an error occurred while generating the response. Please try again."
579
- yield history
580
-
581
- # PDF 변환 이벤트
582
- def on_pdf_convert(file):
583
- """PDF conversion and status update"""
584
- global document_context, document_filename
585
-
586
- if file is None:
587
- return "", {}, "❌ No file selected."
588
-
589
- markdown_content, metadata = convert_pdf_to_markdown(file)
590
-
591
- if "error" in metadata:
592
- status = f"❌ Conversion failed: {metadata['error']}"
593
- else:
594
- # 전역 변수 다시 한번 확인 및 설정 (globals() 사용)
595
- globals()['document_context'] = markdown_content
596
- globals()['document_filename'] = metadata['filename']
597
-
598
- status = f"✅ PDF document converted successfully!\n📄 Filename: {metadata['filename']}\n📏 Document length: {metadata['content_length']:,} characters\n\nYou can now ask questions about the document content in English or Korean.\n\nExample questions:\n- What is the main topic of this document?\n- Summarize the key points\n- 이 문서의 핵심 내용을 설명해주세요"
599
-
600
- print(f"\n✅ Document loading confirmed:")
601
- print(f"- globals()['document_context'] length: {len(globals()['document_context'])}")
602
- print(f"- globals()['document_filename']: {globals()['document_filename']}")
603
-
604
- # 최종 확인
605
- if len(globals()['document_context']) > 0:
606
- print("✅ Document successfully saved to global variables!")
607
- else:
608
- print("❌ Warning: Document not saved to global variables!")
609
-
610
- return markdown_content, metadata, status
611
-
612
- # 파일 업로드 시 자동 변환
613
- file_input.change(
614
- fn=on_pdf_convert,
615
- inputs=[file_input],
616
- outputs=[converted_text, metadata_output, status_text]
617
- )
618
-
619
- # 수동 변환 버튼
620
- convert_button.click(
621
- fn=on_pdf_convert,
622
- inputs=[file_input],
623
- outputs=[converted_text, metadata_output, status_text]
624
- )
625
-
626
- # 문서 테스트 함수
627
- def test_document():
628
- """Test currently loaded document"""
629
- global document_context, document_filename
630
- if document_context:
631
- test_msg = f"✅ Document test results:\n"
632
- test_msg += f"📄 Filename: {document_filename}\n"
633
- test_msg += f"📏 Total length: {len(document_context):,} characters\n"
634
- test_msg += f"📝 First 500 characters:\n{document_context[:500]}..."
635
- return test_msg
636
- else:
637
- return "❌ No document currently loaded."
638
-
639
- test_button.click(
640
- fn=test_document,
641
- outputs=[status_text]
642
- )
643
-
644
- clear_button.click(
645
- fn=clear_document_context,
646
- outputs=[status_text]
647
- ).then(
648
- fn=lambda: ("", {}, check_document_status()),
649
- outputs=[converted_text, metadata_output, status_text]
650
- )
651
-
652
- # 채팅 이벤트
653
- msg.submit(user_submit, [msg, chatbot], [msg, chatbot]).then(
654
- bot_response,
655
- [chatbot, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty],
656
- chatbot
657
- )
658
-
659
- submit.click(user_submit, [msg, chatbot], [msg, chatbot]).then(
660
- bot_response,
661
- [chatbot, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty],
662
- chatbot
663
- )
664
-
665
- clear_chat.click(lambda: [], None, chatbot)
666
-
667
- if __name__ == "__main__":
668
- # 필요한 디렉토리 생성
669
- os.makedirs("./models", exist_ok=True)
670
-
671
- # 환경 변수 확인
672
- if not HF_TOKEN:
673
- print("⚠️ Warning: HF_TOKEN not set. Model download may be restricted.")
674
- print("To set environment variable: export HF_TOKEN='your_huggingface_token'")
675
-
676
- demo.launch(
677
- server_name="0.0.0.0", # Accessible from local network
678
- server_port=7860,
679
- share=False # Disabled for on-premise environment
680
- )