Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,185 Bytes
1df16d0 e714f1c a7d8fec e714f1c 3599d8e e714f1c 3599d8e e714f1c 3599d8e e714f1c a7d8fec e714f1c 3599d8e e714f1c a7d8fec 3599d8e a7d8fec 3599d8e a7d8fec 3599d8e a7d8fec e714f1c 3599d8e a7d8fec 3599d8e a7d8fec e714f1c 3599d8e a7d8fec e714f1c 3599d8e e714f1c 1df16d0 e714f1c 3599d8e e714f1c 1df16d0 e714f1c 3599d8e e714f1c 1df16d0 e714f1c 3599d8e e714f1c 3599d8e 1df16d0 a7d8fec 1df16d0 e714f1c 1df16d0 e714f1c 1df16d0 3599d8e 1df16d0 e714f1c 1df16d0 e714f1c 1df16d0 e714f1c 1df16d0 a7d8fec 1df16d0 e714f1c 1df16d0 e714f1c 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 e714f1c 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e e714f1c 3599d8e e714f1c 1df16d0 3599d8e e714f1c 3599d8e e714f1c 1df16d0 3599d8e e714f1c 3599d8e e714f1c 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e e714f1c 3599d8e e714f1c 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 3599d8e 1df16d0 1fd6876 3599d8e 1df16d0 3599d8e 1df16d0 e714f1c 3599d8e e714f1c 1df16d0 e714f1c 1df16d0 3599d8e becf9cb 3599d8e 1fd6876 e714f1c 3599d8e becf9cb 3599d8e 1fd6876 3599d8e 1df16d0 e714f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import os
import gradio as gr
import random
import time
import logging
import google.generativeai as genai
import torch
import numpy as np
from diffusers import DiffusionPipeline
from transformers import pipeline as hf_pipeline
import re
##############################################################################
# 1) ZeroGPU Environment Setup + Device and Dtype Configuration
##############################################################################
try:
import zerogpu
zerogpu.init()
print("ZeroGPU initialized successfully")
device = "cuda" if torch.cuda.is_available() else "cpu"
except ImportError:
print("ZeroGPU package not installed, continuing without it")
if os.getenv("ZERO_GPU"):
print("ZeroGPU environment variable is set but zerogpu package is not installed.")
device = "cuda" if torch.cuda.is_available() else "cpu"
except Exception as e:
print(f"Error initializing ZeroGPU: {e}")
print("Continuing without ZeroGPU")
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
print(f"Using device: {device}, dtype: {dtype}")
##############################################################################
# 2) Load Models: Translation Model, Diffusion Pipeline
##############################################################################
try:
translator = hf_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=0 if device == "cuda" else -1
)
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
print("Models loaded successfully")
except Exception as e:
print(f"Error loading models: {e}")
def dummy_translator(text):
return [{'translation_text': text}]
class DummyPipe:
def __call__(self, **kwargs):
from PIL import Image
import numpy as np
dummy_img = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
class DummyResult:
def __init__(self, img):
self.images = [img]
return DummyResult(dummy_img)
translator = dummy_translator
pipe = DummyPipe()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
##############################################################################
# Korean detection and input text cleaning functions
##############################################################################
def contains_korean(text):
for char in text:
if ord('κ°') <= ord(char) <= ord('ν£'):
return True
return False
def clean_input_text(text):
"""
Allows only Korean, English, numbers, whitespace and common punctuation marks.
Adjust allowed characters as needed.
"""
allowed = re.compile(r'[^γ±-γ
κ°-ν£a-zA-Z0-9\s\.\,\!\?\-\:\;\'\"]')
cleaned_text = allowed.sub('', text)
return cleaned_text
def log_unexpected_characters(text):
allowed = re.compile(r'[γ±-γ
κ°-ν£a-zA-Z0-9\s\.\,\!\?\-\:\;\'\"]')
unexpected_chars = [char for char in text if not allowed.match(char)]
if unexpected_chars:
print("Unexpected characters found:", set(unexpected_chars))
else:
print("No unexpected characters in the input text.")
##############################################################################
# Image Generation Function
##############################################################################
def generate_design_image(prompt, seed=42, randomize_seed=True, width=1024, height=1024, num_inference_steps=4):
original_prompt = prompt
translated = False
# Clean the input text
prompt = clean_input_text(prompt)
# Pre-process: if input is too long, trim to 1000 characters
if len(prompt) > 1000:
prompt = prompt[:1000]
if contains_korean(prompt):
# When calling translation, add max_length and truncation options to avoid length issues
translation = translator(prompt, max_length=400, truncation=True)
prompt = translation[0]['translation_text']
translated = True
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image
##############################################################################
# Logging Setup
##############################################################################
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("api_debug.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("idea_generator")
##############################################################################
# Gemini API Key
##############################################################################
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
##############################################################################
# Optional Transformation Choice Function
##############################################################################
def choose_alternative(transformation):
if "/" not in transformation:
return transformation
parts = transformation.split("/")
if len(parts) != 2:
return random.choice([part.strip() for part in parts])
left = parts[0].strip()
right = parts[1].strip()
if " " in left:
tokens = left.split(" ", 1)
prefix = tokens[0]
if not right.startswith(prefix):
option1 = left
option2 = prefix + " " + right
else:
option1 = left
option2 = right
return random.choice([option1, option2])
else:
return random.choice([left, right])
##############################################################################
# Transformation Categories Dictionaries
##############################################################################
# Korean version
physical_transformation_categories = {
"μΌμ κΈ°λ₯": [
"μκ° μΌμ/κ°μ§", "μ²κ° μΌμ/κ°μ§", "μ΄κ° μΌμ/κ°μ§", "λ―Έκ° μΌμ/κ°μ§", "νκ° μΌμ/κ°μ§",
"μ¨λ μΌμ/κ°μ§", "μ΅λ μΌμ/κ°μ§", "μλ ₯ μΌμ/κ°μ§", "κ°μλ μΌμ/κ°μ§", "νμ μΌμ/κ°μ§",
"κ·Όμ μΌμ/κ°μ§", "μμΉ μΌμ/κ°μ§", "μ΄λ μΌμ/κ°μ§", "κ°μ€ μΌμ/κ°μ§", "μ μΈμ μΌμ/κ°μ§",
"μμΈμ μΌμ/κ°μ§", "λ°©μ¬μ μΌμ/κ°μ§", "μκΈ°μ₯ μΌμ/κ°μ§", "μ κΈ°μ₯ μΌμ/κ°μ§", "ννλ¬Όμ§ μΌμ/κ°μ§",
"μ체μ νΈ μΌμ/κ°μ§", "μ§λ μΌμ/κ°μ§", "μμ μΌμ/κ°μ§", "λΉ μΈκΈ° μΌμ/κ°μ§", "λΉ νμ₯ μΌμ/κ°μ§",
"κΈ°μΈκΈ° μΌμ/κ°μ§", "pH μΌμ/κ°μ§", "μ λ₯ μΌμ/κ°μ§", "μ μ μΌμ/κ°μ§", "μ΄λ―Έμ§ μΌμ/κ°μ§",
"거리 μΌμ/κ°μ§", "κΉμ΄ μΌμ/κ°μ§", "μ€λ ₯ μΌμ/κ°μ§", "μλ μΌμ/κ°μ§", "νλ¦ μΌμ/κ°μ§",
"μμ μΌμ/κ°μ§", "νλ μΌμ/κ°μ§", "μΌλ μΌμ/κ°μ§", "κΈμ κ°μ§", "μμ μΌμ/κ°μ§",
"κ΄μ μΌμ/κ°μ§", "μ΄μ λ μΌμ/κ°μ§", "ν ν¨κ³Ό μΌμ/κ°μ§", "μ΄μν μΌμ/κ°μ§", "λ μ΄λ μΌμ/κ°μ§",
"λΌμ΄λ€ μΌμ/κ°μ§", "ν°μΉ μΌμ/κ°μ§", "μ μ€μ² μΌμ/κ°μ§", "μ¬λ° μΌμ/κ°μ§", "νμ μΌμ/κ°μ§"
],
"ν¬κΈ°μ νν λ³ν": [
"λΆνΌ λμ΄λ¨/μ€μ΄λ¦", "κΈΈμ΄ λμ΄λ¨/μ€μ΄λ¦", "λλΉ λμ΄λ¨/μ€μ΄λ¦", "λμ΄ λμ΄λ¨/μ€μ΄λ¦",
"λ°λ λ³ν", "λ¬΄κ² μ¦κ°/κ°μ", "λͺ¨μ λ³ν", "μν λ³ν", "λΆκ· λ± λ³ν",
"볡μ‘ν νν λ³ν", "λΉνλ¦Ό/κΌ¬μ", "λΆκ· μΌν νμ₯/μΆμ", "λͺ¨μ리 λ₯κΈκ²/λ μΉ΄λ‘κ²",
"κΉ¨μ§/κ°λΌμ§", "μ¬λ¬ μ‘°κ° λλ μ§", "λ¬Ό μ ν", "λ¨Όμ§ μ ν", "μ°κ·Έλ¬μ§/볡μ",
"μ ν/νΌμ³μ§", "μμ°©/ν½μ°½", "λμ΄λ¨/μμΆ", "ꡬ겨μ§/ννν΄μ§", "λκ°μ§/λ¨λ¨ν΄μ§",
"λ§λ¦Ό/ν΄μ§", "κΊΎμ/ꡬλΆλ¬μ§"
],
"νλ©΄ λ° μΈκ΄ λ³ν": [
"μμ λ³ν", "μ§κ° λ³ν", "ν¬λͺ
/λΆν¬λͺ
λ³ν", "λ°μ§μ/λ¬΄κ΄ λ³ν",
"λΉ λ°μ¬ μ λ λ³ν", "λ¬΄λ¬ λ³ν", "κ°λμ λ°λ₯Έ μμ λ³ν", "λΉμ λ°λ₯Έ μμ λ³ν",
"μ¨λμ λ°λ₯Έ μμ λ³ν", "νλ‘κ·Έλ¨ ν¨κ³Ό", "νλ©΄ κ°λλ³ λΉ λ°μ¬", "νλ©΄ λͺ¨μ λ³ν",
"μ΄λ―ΈμΈ νλ©΄ ꡬ쑰 λ³ν", "μκ° μΈμ ν¨κ³Ό", "μΌλ£©/ν¨ν΄ μμ±", "νλ¦Ό/μ λͺ
ν¨ λ³ν",
"κ΄ν/μ€κΈ° λ³ν", "μμ‘°/μ±λ λ³ν", "λ°κ΄/νκ΄", "λΉ μ°λ ν¨κ³Ό",
"λΉ ν‘μ λ³ν", "λ°ν¬λͺ
ν¨κ³Ό", "κ·Έλ¦Όμ ν¨κ³Ό λ³ν", "μμΈμ λ°μ λ³ν",
"μΌκ΄ ν¨κ³Ό"
],
"λ¬Όμ§μ μν λ³ν": [
"κ³ μ²΄/μ‘체/기체 μ ν", "κ²°μ ν/μ©ν΄", "μ°ν/λΆμ", "λ±λ±ν΄μ§/λΆλλ¬μμ§",
"νΉμ μν μ ν", "무μ ν/κ²°μ ν μ ν", "μ±λΆ λΆλ¦¬", "λ―ΈμΈ μ
μ νμ±/λΆν΄",
"μ € νμ±/νμ΄μ§", "μ€μμ μν λ³ν", "λΆμ μκ° μ λ ¬/λΆν΄", "μνλ³ν μ§μ° νμ",
"λ
Ήμ", "κ΅³μ", "μ¦λ°/μμΆ", "μΉν/μ¦μ°©", "μΉ¨μ /λΆμ ", "λΆμ°/μμ§",
"건쑰/μ΅μ€", "ν½μ€/μμΆ", "λκ²°/ν΄λ", "νν/μΉ¨μ", "μΆ©μ /λ°©μ ",
"κ²°ν©/λΆλ¦¬", "λ°ν¨/λΆν¨"
],
"μμ§μ νΉμ± λ³ν": [
"κ°μ/κ°μ", "μΌμ μλ μ μ§", "μ§λ/μ§λ κ°μ", "λΆλͺν/νκΉ",
"νμ μλ μ¦κ°/κ°μ", "νμ λ°©ν₯ λ³ν", "λΆκ·μΉ μμ§μ", "λ©μ·λ€ λ―Έλλ¬μ§λ νμ",
"곡μ§/λ°κ³΅μ§", "μ 체 μ μ ν/μλ ₯ λ³ν", "μμ§μ μ ν λ³ν", "λ³΅ν© μ§λ μμ§μ",
"νΉμ μ 체 μ μμ§μ", "νμ -μ΄λ μ°κ³ μμ§μ", "κ΄μ± μ μ§", "좩격 ν‘μ",
"좩격 μ λ¬", "μ΄λλ 보쑴", "λ§μ°°λ ₯ λ³ν", "κ΄μ± νμΆ", "λΆμμ κ· ν",
"λμ μμ μ±", "νλ€λ¦Ό κ°μ ", "κ²½λ‘ μμΈ‘μ±", "ννΌ μμ§μ"
],
"ꡬ쑰μ λ³ν": [
"λΆν μΆκ°/μ κ±°", "쑰립/λΆν΄", "μ κΈ°/ν΄κΈ°", "λ³ν/μμ볡ꡬ", "μ΅μ ꡬ쑰 λ³ν",
"μκ° μ¬λ°°μ΄", "μμ° ν¨ν΄ νμ±/μλ©Έ", "κ·μΉμ ν¨ν΄ λ³ν", "λͺ¨λμ λ³ν",
"볡μ‘μ± μ¦κ° ꡬ쑰", "μλ λͺ¨μ κΈ°μ΅ ν¨κ³Ό", "μκ°μ λ°λ₯Έ νν λ³ν", "λΆλΆ μ κ±°",
"λΆλΆ κ΅μ²΄", "κ²°ν©", "λΆλ¦¬", "λΆν /ν΅ν©", "μ€μ²©/κ²ΉμΉ¨", "λ΄λΆ ꡬ쑰 λ³ν",
"μΈλΆ ꡬ쑰 λ³ν", "μ€μ¬μΆ μ΄λ", "κ· νμ λ³ν", "κ³μΈ΅ ꡬ쑰 λ³ν", "μ§μ§ ꡬ쑰 λ³ν",
"μλ ₯ λΆμ° ꡬ쑰", "좩격 ν‘μ ꡬ쑰", "그리λ/λ§€νΈλ¦μ€ ꡬ쑰 λ³ν", "μνΈ μ°κ²°μ± λ³ν"
],
"κ³΅κ° μ΄λ": [
"μ/λ€ μ΄λ", "μ’/μ° μ΄λ", "μ/μλ μ΄λ", "μΈλ‘μΆ νμ (κ³ κ° λλμ)",
"κ°λ‘μΆ νμ (κ³ κ° μ κΈ°)", "κΈΈμ΄μΆ νμ (μμΌλ‘ κΈ°μΈμ)", "μ μ΄λ", "λμ ν μ΄λ",
"κ΄μ±μ μν λ―Έλλ¬μ§", "νμ μΆ λ³ν", "λΆκ·μΉ νμ ", "νλ€λ¦Ό μ΄λ", "ν¬λ¬Όμ μ΄λ",
"무μ€λ ₯ λΆμ ", "μλ©΄ μ λΆμ ", "μ ν/λμ½", "μ¬λΌμ΄λ©", "λ‘€λ§", "μμ λν",
"μ볡 μ΄λ", "νμ± νκΉ", "κ΄ν΅", "ννΌ μμ§μ", "μ§κ·Έμ¬κ·Έ μ΄λ", "μ€μ μ΄λ"
],
"μκ° κ΄λ ¨ λ³ν": [
"λ
Έν/νν", "λ§λͺ¨/λΆμ", "μ λ°λ¨/λ³μ", "μμ/ν볡", "μλͺ
μ£ΌκΈ° λ³ν",
"μ¬μ©μ μνΈμμ©μ λ°λ₯Έ μ μ", "νμ΅ κΈ°λ° νν μ΅μ ν", "μκ°μ λ°λ₯Έ λ¬Όμ± λ³ν",
"μ§λ¨ κΈ°μ΅ ν¨κ³Ό", "λ¬Ένμ μλ―Έ λ³ν", "μ§μ° λ°μ", "μ΄μ μν μμ‘΄ λ³ν",
"μ μ§μ μκ° λ³ν", "μ§νμ λ³ν", "μ£ΌκΈ°μ μ¬μ", "κ³μ λ³ν μ μ",
"μμ²΄λ¦¬λ¬ λ³ν", "μμ μ£ΌκΈ° λ¨κ³", "μ±μ₯/ν΄ν", "μκΈ° 볡ꡬ/μ¬μ",
"μμ° μν μ μ", "μ§μμ±/μΌμμ±", "κΈ°μ΅ ν¨κ³Ό", "μ§μ°λ μμ©", "λμ ν¨κ³Ό"
],
"λΉκ³Ό μκ° ν¨κ³Ό": [
"λ°κ΄/μλ±", "λΉ ν¬κ³Ό/μ°¨λ¨", "λΉ μ°λ/μ§μ€", "μμ μ€ννΈλΌ λ³ν", "λΉ νμ ",
"λΉ κ°μ", "νλ‘κ·Έλ¨ μμ±", "λ μ΄μ ν¨κ³Ό", "λΉ νΈκ΄", "νκ΄/μΈκ΄",
"μμΈμ /μ μΈμ λ°κ΄", "κ΄νμ μ°©μ", "λΉ κ΅΄μ ", "κ·Έλ¦Όμ μμ±/μ κ±°",
"μμμ°¨ ν¨κ³Ό", "무μ§κ° ν¨κ³Ό", "κΈλ‘μ° ν¨κ³Ό", "νλμ ν¨κ³Ό", "μ‘°λͺ
ν¨ν΄",
"λΉ ν¨κ³Ό", "κ΄ νν° ν¨κ³Ό", "λΉμ λ°©ν₯μ± λ³ν", "ν¬μ ν¨κ³Ό", "λΉ κ°μ§/λ°μ",
"κ΄λ λ³ν"
],
"μ리μ μ§λ ν¨κ³Ό": [
"Sound generation/cessation", "Pitch change", "Volume change", "Timbre change",
"Resonance/antiresonance", "Acoustic vibration", "Ultrasonic/infrasonic emission", "Sound concentration/distribution",
"Sound reflection/absorption", "Acoustic Doppler effect", "Sound wave interference", "Acoustic resonance",
"Vibration pattern change", "Percussive effect", "Audio feedback", "Sound shielding/amplification",
"Directional sound", "Sound distortion", "Beat generation", "Harmonics generation", "Frequency modulation",
"Acoustic shockwave", "Sound filtering"
],
"Thermal Changes": [
"Temperature rise/fall", "Thermal expansion/contraction", "Heat transfer/blocking", "Pressure increase/decrease",
"Magnetization due to heat change", "Entropy change", "Thermoelectric effect", "Magnetic-induced thermal change",
"Heat storage/release during phase change", "Thermal stress buildup/release", "Impact of rapid temperature change",
"Radiative cooling/heating", "Exothermic/endothermic", "Heat distribution change", "Heat reflection/absorption",
"Cooling condensation", "Thermal activation", "Thermal discoloration", "Coefficient of thermal expansion change", "Thermal stability change",
"Heat resistance/cold resistance", "Self-heating", "Thermal equilibrium/imbalance", "Thermal deformation", "Heat dispersion/concentration"
],
"Electrical and Magnetic Changes": [
"Magnetism creation/cessation", "Charge increase/decrease", "Electric field creation/cessation", "Magnetic field creation/cessation",
"Superconducting transition", "Ferroelectric property change", "Quantum state change", "Plasma formation/cessation",
"Spin wave transmission", "Electricity generation by light", "Electricity generation by pressure", "Current change in magnetic field",
"Electrical resistance change", "Electrical conductivity change", "Static electricity generation/discharge", "Electromagnetic induction",
"Electromagnetic wave emission/absorption", "Capacitance change", "Magnetic hysteresis", "Electrical polarization",
"Electron flow direction change", "Electrical resonance", "Electrical shielding/exposure", "Magnetic shielding/exposure",
"Magnetic field alignment"
],
"Chemical Change": [
"Surface coating change", "Material composition change", "Chemical reaction change", "Catalytic action start/stop",
"Light-induced chemical reaction", "Electricity-induced chemical reaction", "Monolayer formation", "Molecular-level structural change",
"Biomimetic surface change", "Environmentally responsive material change", "Periodic chemical reaction", "Oxidation", "Reduction",
"Polymerization", "Water splitting", "Compound formation", "Radiation effects", "Acid-base reaction", "Neutralization reaction",
"Ionization", "Chemical adsorption/desorption", "Catalytic efficiency change", "Enzyme activity change", "Colorimetric reaction",
"pH change", "Chemical equilibrium shift", "Bond formation/breakage", "Solubility change"
],
"Biological Change": [
"Growth/shrinkage", "Cell division/death", "Bioluminescence", "Metabolic change", "Immune response",
"Hormone secretion", "Neural response", "Genetic expression", "Adaptation/evolution", "Circadian rhythm change",
"Regeneration/healing", "Aging/maturation", "Biomimetic change", "Biofilm formation", "Biological degradation",
"Enzyme activation/inactivation", "Biological signaling", "Stress response", "Thermoregulation", "Biological clock change",
"Extracellular matrix change", "Biomechanical response", "Cell motility", "Cell polarity change", "Nutritional status change"
],
"Environmental Interaction": [
"Temperature response", "Humidity response", "Pressure response", "Gravity response", "Magnetic field response",
"Light response", "Sound response", "Chemical detection", "Mechanical stimulus detection", "Electrical stimulus response",
"Radiation response", "Vibration detection", "pH response", "Solvent response", "Gas exchange",
"Pollution response", "Weather response", "Seasonal response", "Circadian response", "Ecosystem interaction",
"Symbiotic/competitive interaction", "Predator/prey relationship", "Swarm formation", "Territorial behavior", "Migration/settlement pattern"
]
}
##############################################################################
# Gemini API Call Function (Language Independent)
##############################################################################
def query_gemini_api(prompt):
try:
model = genai.GenerativeModel('gemini-2.0-flash-thinking-exp-01-21')
response = model.generate_content(prompt)
try:
if hasattr(response, 'text'):
return response.text
if hasattr(response, 'candidates') and response.candidates:
candidate = response.candidates[0]
if hasattr(candidate, 'content'):
content = candidate.content
if hasattr(content, 'parts') and content.parts:
if len(content.parts) > 0:
return content.parts[0].text
if hasattr(response, 'parts') and response.parts:
if len(response.parts) > 0:
return response.parts[0].text
return "Unable to generate a response. API response structure is different than expected."
except Exception as inner_e:
logger.error(f"Error processing response: {inner_e}")
return f"An error occurred while processing the response: {str(inner_e)}"
except Exception as e:
logger.error(f"Error calling Gemini API: {e}")
if "API key not valid" in str(e):
return "API key is not valid. Please check your GEMINI_API_KEY environment variable."
return f"An error occurred while calling the API: {str(e)}"
##############################################################################
# Description Expansion Functions (LLM) - Korean and English Versions
##############################################################################
def enhance_with_llm(base_description, obj_name, category):
prompt = f"""
λ€μμ '{obj_name}'μ '{category}' κ΄λ ¨ κ°λ¨ν μ€λͺ
μ
λλ€:
"{base_description}"
μ λ΄μ©μ λ³΄λ€ κ΅¬μ²΄ννμ¬,
1) μ°½μμ μΈ λͺ¨λΈ/컨μ
/νμμ λ³νμ λν μ΄ν΄,
2) νμ ν¬μΈνΈμ κΈ°λ₯μ± λ±μ μ€μ¬μΌλ‘
3~4λ¬Έμ₯μ μμ΄λμ΄λ‘ νμ₯ν΄ μ£ΌμΈμ.
"""
return query_gemini_api(prompt)
def enhance_with_llm_en(base_description, obj_name, category):
prompt = f"""
Below is a brief description related to '{category}' for '{obj_name}':
"{base_description}"
Please expand the above content into a more detailed explanation, focusing on:
1) Creative transformation of the model/concept/shape,
2) Innovative aspects and functionality,
in 3-4 sentences.
"""
return query_gemini_api(prompt)
##############################################################################
# Transformation Idea Generation Functions for Both Languages
##############################################################################
def generate_single_object_transformation_for_category_lang(obj, selected_category, categories_dict, lang="ko"):
transformations = categories_dict.get(selected_category)
if not transformations:
return {}
transformation = choose_alternative(random.choice(transformations))
if lang == "ko":
base_description = f"{obj}μ΄(κ°) {transformation} νμμ 보μΈλ€"
else:
base_description = f"{obj} exhibits {transformation}"
return {selected_category: {"base": base_description, "enhanced": None}}
def generate_two_objects_interaction_for_category_lang(obj1, obj2, selected_category, categories_dict, lang="ko"):
transformations = categories_dict.get(selected_category)
if not transformations:
return {}
transformation = choose_alternative(random.choice(transformations))
if lang == "ko":
template = random.choice([
"{obj1}μ΄(κ°) {obj2}μ κ²°ν©νμ¬ {change}κ° λ°μνλ€",
"{obj1}κ³Ό(μ) {obj2}μ΄(κ°) μΆ©λνλ©΄μ {change}κ° μΌμ΄λ¬λ€"
])
else:
template = random.choice([
"{obj1} combined with {obj2} resulted in {change}",
"A collision between {obj1} and {obj2} led to {change}"
])
base_description = template.format(obj1=obj1, obj2=obj2, change=transformation)
return {selected_category: {"base": base_description, "enhanced": None}}
def generate_three_objects_interaction_for_category_lang(obj1, obj2, obj3, selected_category, categories_dict, lang="ko"):
transformations = categories_dict.get(selected_category)
if not transformations:
return {}
transformation = choose_alternative(random.choice(transformations))
if lang == "ko":
template = random.choice([
"{obj1}, {obj2}, {obj3}μ΄(κ°) μΌκ°ν κ΅¬μ‘°λ‘ κ²°ν©νμ¬ {change}κ° λ°μνλ€",
"{obj1}μ΄(κ°) {obj2}μ(κ³Ό) {obj3} μ¬μ΄μμ λ§€κ°μ²΄ μν μ νλ©° {change}λ₯Ό μ΄μ§νλ€"
])
else:
template = random.choice([
"{obj1}, {obj2}, and {obj3} formed a triangular structure resulting in {change}",
"{obj1} acted as an intermediary between {obj2} and {obj3}, facilitating {change}"
])
base_description = template.format(obj1=obj1, obj2=obj2, obj3=obj3, change=transformation)
return {selected_category: {"base": base_description, "enhanced": None}}
def enhance_descriptions_lang(results, objects, lang="ko"):
obj_name = " λ° ".join([obj for obj in objects if obj]) if lang=="ko" else " and ".join([obj for obj in objects if obj])
for category, result in results.items():
if lang == "ko":
result["enhanced"] = enhance_with_llm(result["base"], obj_name, category)
else:
result["enhanced"] = enhance_with_llm_en(result["base"], obj_name, category)
return results
def generate_transformations_lang(text1, text2, text3, selected_category, categories_dict, lang="ko"):
if text2 and text3:
results = generate_three_objects_interaction_for_category_lang(text1, text2, text3, selected_category, categories_dict, lang)
objects = [text1, text2, text3]
elif text2:
results = generate_two_objects_interaction_for_category_lang(text1, text2, selected_category, categories_dict, lang)
objects = [text1, text2]
else:
results = generate_single_object_transformation_for_category_lang(text1, selected_category, categories_dict, lang)
objects = [text1]
return enhance_descriptions_lang(results, objects, lang)
def format_results_lang(results, lang="ko"):
formatted = ""
if lang == "ko":
for category, result in results.items():
formatted += f"## {category}\n**κΈ°λ³Έ μμ΄λμ΄**: {result['base']}\n\n**νμ₯λ μμ΄λμ΄**: {result['enhanced']}\n\n---\n\n"
else:
for category, result in results.items():
formatted += f"## {category}\n**Base Idea**: {result['base']}\n\n**Expanded Idea**: {result['enhanced']}\n\n---\n\n"
return formatted
def process_inputs_lang(text1, text2, text3, selected_category, categories_dict, lang="ko", progress=gr.Progress()):
text1 = text1.strip() if text1 else None
text2 = text2.strip() if text2 else None
text3 = text3.strip() if text3 else None
if not text1:
return "μ€λ₯: μ΅μ νλμ ν€μλλ₯Ό μ
λ ₯ν΄μ£ΌμΈμ." if lang=="ko" else "Error: Please enter at least one keyword."
if lang == "ko":
progress(0.05, desc="μμ΄λμ΄ μμ± μ€λΉ μ€...")
time.sleep(0.3)
progress(0.1, desc="μ°½μμ μΈ μμ΄λμ΄ μμ± μμ...")
else:
progress(0.05, desc="Preparing idea generation...")
time.sleep(0.3)
progress(0.1, desc="Generating creative idea...")
results = generate_transformations_lang(text1, text2, text3, selected_category, categories_dict, lang)
if lang == "ko":
progress(0.8, desc="κ²°κ³Ό ν¬λ§·ν
μ€...")
formatted = format_results_lang(results, lang)
progress(1.0, desc="μλ£!")
else:
progress(0.8, desc="Formatting results...")
formatted = format_results_lang(results, lang)
progress(1.0, desc="Done!")
return formatted
def process_all_lang(text1, text2, text3, selected_category, categories_dict, lang="ko", progress=gr.Progress()):
idea_result = process_inputs_lang(text1, text2, text3, selected_category, categories_dict, lang, progress)
image_result = generate_design_image(
idea_result,
seed=42,
randomize_seed=True,
width=1024,
height=1024,
num_inference_steps=4
)
return idea_result, image_result
##############################################################################
# Warning Message Function for API Key (Language Specific)
##############################################################################
def get_warning_message_lang(lang="ko"):
if not GEMINI_API_KEY:
return "β οΈ νκ²½ λ³μ GEMINI_API_KEYκ° μ€μ λμ§ μμμ΅λλ€. Gemini API ν€λ₯Ό μ€μ νμΈμ." if lang=="ko" else "β οΈ The GEMINI_API_KEY environment variable is not set. Please set your Gemini API key."
return ""
##############################################################################
# Add "Business Ideas" category to each dictionary
##############################################################################
physical_transformation_categories["λΉμ¦λμ€ μμ΄λμ΄"] = [
"μμ₯ μ¬μ μ/μ κ· μμ₯ κ°μ²",
"λΉμ¦λμ€ λͺ¨λΈ νμ /λμ§νΈ μ ν",
"κ³ κ° κ²½ν νμ /μλΉμ€ νμ ",
"νλ ₯ λ° ννΈλμ κ°ν/μνκ³ κ΅¬μΆ",
"κΈλ‘λ² νμ₯/μ§μν μ λ΅",
"μ΄μ ν¨μ¨μ± μ¦λ/μκ° μ κ°",
"λΈλλ 리ν¬μ§μ
λ/μ΄λ―Έμ§ μ ν",
"μ§μ κ°λ₯ν μ±μ₯/μ¬νμ κ°μΉ μ°½μΆ",
"λ°μ΄ν° κΈ°λ° μμ¬κ²°μ /AI λμ
",
"μ κΈ°μ μ΅ν©/νμ ν¬μ"
]
physical_transformation_categories_en["Business Ideas"] = [
"Market redefinition/new market creation",
"Business model innovation/digital transformation",
"Customer experience and service innovation",
"Enhanced partnerships and ecosystem building",
"Global expansion and localization strategy",
"Operational efficiency improvement/cost reduction",
"Brand repositioning/image transformation",
"Sustainable growth and social value creation",
"Data-driven decision making/AI adoption",
"Convergence of new technologies/innovative investments"
]
##############################################################################
# Helper function for caching examples in the English tab
##############################################################################
def process_all_lang_example(text1, text2, text3, selected_category):
# κ³ μ λ stateκ°(physical_transformation_categories_en, "en")μΌλ‘ νΈμΆ
return process_all_lang(text1, text2, text3, selected_category, physical_transformation_categories_en, "en")
##############################################################################
# Gradio UI with Two Tabs: English (Main Home) and Korean
##############################################################################
with gr.Blocks(
title="Idea Transformer",
theme=gr.themes.Soft(primary_hue="teal", secondary_hue="slate", neutral_hue="neutral")
) as demo:
gr.HTML("""
<style>
body {
background: linear-gradient(135deg, #e0eafc, #cfdef3);
font-family: 'Arial', sans-serif;
}
.gradio-container {
padding: 20px;
}
h1, h2 {
text-align: center;
}
h1 {
color: #333;
}
h2 {
color: #555;
}
.output {
background-color: #ffffff;
padding: 15px;
border-radius: 8px;
}
.gr-button {
background-color: #4CAF50;
color: white;
border: none;
border-radius: 4px;
padding: 8px 16px;
}
.progress-message {
color: #2196F3;
font-weight: bold;
margin-top: 10px;
}
</style>
""")
with gr.Tabs():
with gr.Tab(label="English"):
gr.Markdown("# π Idea Transformer")
gr.Markdown("Based on up to **three keywords** and a **selected category**, this tool generates a creative transformation idea and a design image using the expanded idea as a prompt. https://discord.gg/openfreeai")
warning_en = gr.Markdown(get_warning_message_lang("en"))
with gr.Row():
with gr.Column(scale=1):
text_input1_en = gr.Textbox(label="Keyword 1 (required)", placeholder="e.g., Smartphone")
text_input2_en = gr.Textbox(label="Keyword 2 (optional)", placeholder="e.g., Artificial Intelligence")
text_input3_en = gr.Textbox(label="Keyword 3 (optional)", placeholder="e.g., Healthcare")
category_radio_en = gr.Radio(
label="Select Category",
choices=list(physical_transformation_categories_en.keys()),
value=list(physical_transformation_categories_en.keys())[0],
info="Select a category."
)
status_msg_en = gr.Markdown("π‘ Click the 'Generate Idea' button to create an idea and design image based on the selected category.")
processing_indicator_en = gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; margin: 10px 0;">
<div style="border: 5px solid #f3f3f3; border-top: 5px solid #3498db; border-radius: 50%; width: 30px; height: 30px; animation: spin 2s linear infinite;"></div>
<p style="margin-left: 10px; font-weight: bold; color: #3498db;">Processing...</p>
</div>
<style>
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
""", visible=False)
submit_button_en = gr.Button("Generate Idea", variant="primary")
with gr.Column(scale=2):
idea_output_en = gr.Markdown(label="Idea Output")
generated_image_en = gr.Image(label="Generated Design Image", type="pil")
gr.Examples(
examples=[
["Smartphone", "", "", "Sensor Functions"],
["Car", "", "", "Size and Shape Change"],
["Car", "Artificial Intelligence", "", "Surface and Appearance Change"],
["Drone", "Artificial Intelligence", "", "Material State Change"],
["Sneakers", "Wearable", "Health", "Structural Change"],
],
inputs=[text_input1_en, text_input2_en, text_input3_en, category_radio_en],
fn=process_all_lang_example,
outputs=[idea_output_en, generated_image_en],
cache_examples=True
)
def show_processing_indicator_en():
return gr.update(visible=True)
def hide_processing_indicator_en():
return gr.update(visible=False)
submit_button_en.click(
fn=show_processing_indicator_en,
inputs=None,
outputs=processing_indicator_en
).then(
fn=process_all_lang,
inputs=[text_input1_en, text_input2_en, text_input3_en, category_radio_en, gr.State(physical_transformation_categories_en), gr.State("en")],
outputs=[idea_output_en, generated_image_en]
).then(
fn=hide_processing_indicator_en,
inputs=None,
outputs=processing_indicator_en
)
with gr.Tab(label="νκ΅μ΄"):
gr.Markdown("# π μμ΄λμ΄ νΈλμ€ν¬λ¨Έ")
gr.Markdown("μ
λ ₯ν **ν€μλ**(μ΅λ 3κ°)μ **μΉ΄ν
κ³ λ¦¬**λ₯Ό λ°νμΌλ‘, μ°½μμ μΈ λͺ¨λΈ/컨μ
/νμ λ³ν μμ΄λμ΄λ₯Ό μμ±νκ³ , ν΄λΉ νμ₯ μμ΄λμ΄λ₯Ό ν둬ννΈλ‘ νμ¬ λμμΈ μ΄λ―Έμ§λ₯Ό μμ±ν©λλ€. https://discord.gg/openfreeai")
warning_ko = gr.Markdown(get_warning_message_lang("ko"))
with gr.Row():
with gr.Column(scale=1):
text_input1_ko = gr.Textbox(label="ν€μλ 1 (νμ)", placeholder="μ: μ€λ§νΈν°")
text_input2_ko = gr.Textbox(label="ν€μλ 2 (μ ν)", placeholder="μ: μΈκ³΅μ§λ₯")
text_input3_ko = gr.Textbox(label="ν€μλ 3 (μ ν)", placeholder="μ: ν¬μ€μΌμ΄")
category_radio_ko = gr.Radio(
label="μΉ΄ν
κ³ λ¦¬ μ ν",
choices=list(physical_transformation_categories.keys()),
value=list(physical_transformation_categories.keys())[0],
info="μΆλ ₯ν μΉ΄ν
κ³ λ¦¬λ₯Ό μ ννμΈμ."
)
status_msg_ko = gr.Markdown("π‘ 'μμ΄λμ΄ μμ±νκΈ°' λ²νΌμ ν΄λ¦νλ©΄ μ νν μΉ΄ν
κ³ λ¦¬μ ν΄λΉνλ μμ΄λμ΄μ λμμΈ μ΄λ―Έμ§κ° μμ±λ©λλ€.")
processing_indicator_ko = gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; margin: 10px 0;">
<div style="border: 5px solid #f3f3f3; border-top: 5px solid #3498db; border-radius: 50%; width: 30px; height: 30px; animation: spin 2s linear infinite;"></div>
<p style="margin-left: 10px; font-weight: bold; color: #3498db;">μ²λ¦¬ μ€μ
λλ€...</p>
</div>
<style>
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
""", visible=False)
submit_button_ko = gr.Button("μμ΄λμ΄ μμ±νκΈ°", variant="primary")
with gr.Column(scale=2):
idea_output_ko = gr.Markdown(label="μμ΄λμ΄ κ²°κ³Ό")
generated_image_ko = gr.Image(label="μμ±λ λμμΈ μ΄λ―Έμ§", type="pil")
gr.Examples(
examples=[
["μ€λ§νΈν°", "", "", "μΌμ κΈ°λ₯"],
["μλμ°¨", "", "", "ν¬κΈ°μ νν λ³ν"],
["μλμ°¨", "μΈκ³΅μ§λ₯", "", "νλ©΄ λ° μΈκ΄ λ³ν"],
["λλ‘ ", "μΈκ³΅μ§λ₯", "", "λ¬Όμ§μ μν λ³ν"],
["μ΄λν", "μ¨μ΄λ¬λΈ", "건κ°", "ꡬ쑰μ λ³ν"],
],
inputs=[text_input1_ko, text_input2_ko, text_input3_ko, category_radio_ko]
)
def show_processing_indicator_ko():
return gr.update(visible=True)
def hide_processing_indicator_ko():
return gr.update(visible=False)
submit_button_ko.click(
fn=show_processing_indicator_ko,
inputs=None,
outputs=processing_indicator_ko
).then(
fn=process_all_lang,
inputs=[text_input1_ko, text_input2_ko, text_input3_ko, category_radio_ko, gr.State(physical_transformation_categories), gr.State("ko")],
outputs=[idea_output_ko, generated_image_ko]
).then(
fn=hide_processing_indicator_ko,
inputs=None,
outputs=processing_indicator_ko
)
if __name__ == "__main__":
demo.launch(debug=True)
|