Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,363 Bytes
830d0b4 6e170c6 01d3ddb 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 a763ff6 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 d6e21f9 830d0b4 6e170c6 830d0b4 a763ff6 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 6e170c6 830d0b4 6b460dc 7686a04 01d3ddb 7686a04 01d3ddb 830d0b4 01d3ddb 7686a04 01d3ddb 7686a04 01d3ddb 6b460dc 01d3ddb 6b460dc 01d3ddb 7686a04 01d3ddb a3da2c1 01d3ddb 7686a04 01d3ddb 6b460dc 830d0b4 01d3ddb 830d0b4 6e170c6 830d0b4 01d3ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
import spaces
# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
vl_gpt = vl_gpt.to(torch.float16)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
@torch.inference_mode()
@spaces.GPU(duration=120)
def multimodal_understanding(image, question, seed, top_p, temperature):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{"role": "<|Assistant|>", "content": ""},
]
pil_images = [Image.fromarray(image)]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=4000,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
def generate(input_ids,
width,
height,
temperature: float = 1,
parallel_size: int = 5,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
with torch.no_grad():
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt,
seed=None,
guidance=5,
t2i_temperature=1.0):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 5
with torch.no_grad():
messages = [{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
output, patches = generate(input_ids,
width // 16 * 16,
height // 16 * 16,
cfg_weight=guidance,
parallel_size=parallel_size,
temperature=t2i_temperature)
images = unpack(patches,
width // 16 * 16,
height // 16 * 16,
parallel_size=parallel_size)
return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
# Custom CSS as a string
custom_css = """
.gradio-container {
font-family: 'Inter', -apple-system, sans-serif;
}
.image-preview {
min-height: 300px;
max-height: 500px;
width: 100%;
object-fit: contain;
border-radius: 8px;
border: 2px solid #eee;
}
.tab-nav {
background: white;
padding: 1rem;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.examples-table {
font-size: 0.9rem;
}
.gr-button.gr-button-lg {
padding: 12px 24px;
font-size: 1.1rem;
}
.gr-input, .gr-select {
border-radius: 6px;
}
.gr-form {
background: white;
padding: 20px;
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
}
.gr-panel {
border: none;
background: transparent;
}
.footer {
text-align: center;
margin-top: 2rem;
padding: 1rem;
color: #666;
}
"""
# Gradio interface with improved UI
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"),
css=custom_css
) as demo:
gr.Markdown(
"""
# Deepseek Multimodal
### Advanced AI for Visual Understanding and Generation
This powerful multimodal AI system combines:
* **Visual Analysis**: Advanced image understanding and medical image interpretation
* **Creative Generation**: High-quality image generation from text descriptions
* **Interactive Chat**: Natural conversation about visual content
"""
)
with gr.Tabs():
# Visual Chat Tab
with gr.Tab("Visual Understanding"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_input = gr.Image(
label="Upload Image",
type="numpy",
elem_classes="image-preview"
)
with gr.Column(scale=1):
question_input = gr.Textbox(
label="Question or Analysis Request",
placeholder="Ask a question about the image or request detailed analysis...",
lines=3
)
with gr.Row():
und_seed_input = gr.Number(
label="Seed",
precision=0,
value=42,
container=False
)
top_p = gr.Slider(
minimum=0,
maximum=1,
value=0.95,
step=0.05,
label="Top-p",
container=False
)
temperature = gr.Slider(
minimum=0,
maximum=1,
value=0.1,
step=0.05,
label="Temperature",
container=False
)
understanding_button = gr.Button(
"Analyze Image",
variant="primary"
)
understanding_output = gr.Textbox(
label="Analysis Results",
lines=10,
show_copy_button=True
)
with gr.Accordion("Medical Analysis Examples", open=False):
gr.Examples(
examples=[
[
"""You are an AI assistant trained to analyze medical images...""",
"fundus.webp",
],
],
inputs=[question_input, image_input],
)
# Image Generation Tab
with gr.Tab("Image Generation"):
with gr.Column():
prompt_input = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create in detail...",
lines=3
)
with gr.Row():
cfg_weight_input = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=0.5,
label="Guidance Scale",
info="Higher values create images that more closely match your prompt"
)
t2i_temperature = gr.Slider(
minimum=0,
maximum=1,
value=1.0,
step=0.05,
label="Temperature",
info="Controls randomness in generation"
)
seed_input = gr.Number(
label="Seed (Optional)",
precision=0,
value=12345,
info="Set for reproducible results"
)
generation_button = gr.Button(
"Generate Images",
variant="primary"
)
image_output = gr.Gallery(
label="Generated Images",
columns=3,
rows=2,
height=500,
object_fit="contain"
)
with gr.Accordion("Generation Examples", open=False):
gr.Examples(
examples=[
"Master shifu racoon wearing drip attire as a street gangster.",
"The face of a beautiful girl",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A glass of red wine on a reflective surface.",
"A cute and adorable baby fox with big brown eyes...",
],
inputs=prompt_input,
)
# Connect components
understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
outputs=understanding_output
)
generation_button.click(
fn=generate_image,
inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
outputs=image_output
)
# Launch the demo
if __name__ == "__main__":
demo.launch(share=True)
|