File size: 15,451 Bytes
830d0b4
 
 
 
 
 
 
 
 
6e170c6
a763ff6
830d0b4
 
 
6e170c6
830d0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
6e170c6
830d0b4
a763ff6
830d0b4
 
 
 
 
 
 
 
 
 
 
 
6e170c6
830d0b4
 
 
6e170c6
830d0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e21f9
830d0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e170c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830d0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a763ff6
830d0b4
 
6e170c6
 
830d0b4
 
 
 
 
 
 
 
 
 
 
 
6e170c6
 
830d0b4
 
 
 
6e170c6
830d0b4
 
 
 
 
6e170c6
 
830d0b4
 
6e170c6
 
830d0b4
6e170c6
830d0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3deddce
830d0b4
 
d6e21f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830d0b4
 
 
 
 
 
 
 
 
 
 
 
6e170c6
830d0b4
6e170c6
830d0b4
 
 
 
 
 
 
6e170c6
830d0b4
 
6e170c6
 
 
830d0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
6e170c6
830d0b4
 
 
6e170c6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image

import numpy as np
import os
import time
import spaces  # Import spaces for ZeroGPU compatibility


# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
                                             language_config=language_config,
                                             trust_remote_code=True)
if torch.cuda.is_available():
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
    vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

@torch.inference_mode()
@spaces.GPU(duration=120) 
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)
    
    conversation = [
        {
            "role": "<|User|>",
            "content": f"<image_placeholder>\n{question}",
            "images": [image],
        },
        {"role": "<|Assistant|>", "content": ""},
    ]
    
    pil_images = [Image.fromarray(image)]
    prepare_inputs = vl_chat_processor(
        conversations=conversation, images=pil_images, force_batchify=True
    ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
    
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
    
    outputs = vl_gpt.language_model.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=prepare_inputs.attention_mask,
        pad_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=4000,
        do_sample=False if temperature == 0 else True,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
    )
    
    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    return answer


def generate(input_ids,
             width,
             height,
             temperature: float = 1,
             parallel_size: int = 5,
             cfg_weight: float = 5,
             image_token_num_per_image: int = 576,
             patch_size: int = 16):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)

    pkv = None
    for i in range(image_token_num_per_image):
        with torch.no_grad():
            outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
                                                use_cache=True,
                                                past_key_values=pkv)
            pkv = outputs.past_key_values
            hidden_states = outputs.last_hidden_state
            logits = vl_gpt.gen_head(hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
            probs = torch.softmax(logits / temperature, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)

            img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
            inputs_embeds = img_embeds.unsqueeze(dim=1)

    

    patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
                                                 shape=[parallel_size, 8, width // patch_size, height // patch_size])

    return generated_tokens.to(dtype=torch.int), patches

def unpack(dec, width, height, parallel_size=5):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    return visual_img



@torch.inference_mode()
@spaces.GPU(duration=120)  # Specify a duration to avoid timeout
def generate_image(prompt,
                   seed=None,
                   guidance=5,
                   t2i_temperature=1.0):
    # Clear CUDA cache and avoid tracking gradients
    torch.cuda.empty_cache()
    # Set the seed for reproducible results
    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        np.random.seed(seed)
    width = 384
    height = 384
    parallel_size = 5
    
    with torch.no_grad():
        messages = [{'role': '<|User|>', 'content': prompt},
                    {'role': '<|Assistant|>', 'content': ''}]
        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
                                                                   sft_format=vl_chat_processor.sft_format,
                                                                   system_prompt='')
        text = text + vl_chat_processor.image_start_tag
        
        input_ids = torch.LongTensor(tokenizer.encode(text))
        output, patches = generate(input_ids,
                                   width // 16 * 16,
                                   height // 16 * 16,
                                   cfg_weight=guidance,
                                   parallel_size=parallel_size,
                                   temperature=t2i_temperature)
        images = unpack(patches,
                        width // 16 * 16,
                        height // 16 * 16,
                        parallel_size=parallel_size)

        return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
        

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(value="# Multimodal Understanding")
    with gr.Row():
        image_input = gr.Image()
        with gr.Column():
            question_input = gr.Textbox(label="Question")
            und_seed_input = gr.Number(label="Seed", precision=0, value=42)
            top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
        
    understanding_button = gr.Button("Chat")
    understanding_output = gr.Textbox(label="Response")

    examples_inpainting = gr.Examples(
        label="Multimodal Understanding examples",
        examples=[
            [
                "explain this meme",
                "doge.png",
            ],
            [
                """Analyze the provided fundus image in exhaustive detail, following the standard ophthalmological protocol for fundus examination.  Output an HTML report structured as a formal medical document.  The report MUST:

1.  **Image Quality Assessment:** Begin with a concise assessment of image quality, noting focus, illumination, field of view, and any artifacts (and their impact on assessability).

2.  **Detailed Clinical Findings:**  Describe each of the following areas with the utmost precision and specificity, using proper ophthalmological terminology:
    *   **Optic Disc:**
        *   Size and shape (including any abnormalities).
        *   Color (specifically noting any pallor and its location).
        *   Cup-to-Disc Ratio (CDR), providing both vertical and horizontal estimates.
        *   Neuroretinal Rim:  Assess rim thickness in all quadrants (superior, inferior, nasal, temporal).  Explicitly state whether the ISNT rule is followed or violated.  Describe any notching or focal thinning.
        *   Peripapillary Region:  Describe the presence/absence of peripapillary atrophy (PPA), differentiating between alpha and beta zones. Note any hemorrhages.
    *   **Retinal Vasculature:**
        *   Arterioles:  Describe caliber (narrowing, dilation), tortuosity, and any focal abnormalities.
        *   Venules:  Describe caliber, tortuosity, and any abnormalities.
        *   Arteriovenous (A/V) Ratio: Estimate the A/V ratio.
        *   Crossing Changes:  Note any arteriovenous nicking or other crossing abnormalities.
        *  Vessel Course: Describe the course of the major vessels, and check for abnormalities.
    *   **Macula:**
        *   Foveal Reflex:  Describe the presence/absence and quality of the foveal reflex.
        *   Pigment Changes: Note any pigmentary abnormalities, drusen, or other lesions.
        *   Edema/Exudates:  Describe any signs of macular edema or exudates.
    *   **Peripheral Retina:**
        *   Mid-Periphery: Describe any abnormalities (hemorrhages, exudates, tears, etc.).
        *   Far Periphery: Note the extent of visualization and any findings.

3.  **Differential Diagnosis:**  Based solely on the image findings, provide a prioritized differential diagnosis.  Include the most likely diagnosis and any other plausible possibilities.  For each diagnosis, explain the reasoning based on the observed features.

4.  **Diagnostic Confidence:** Indicate the confidence level for the primary diagnosis.  List the key image findings that support the diagnosis.

5.  **Simulated AI Attention Metrics:**  Create a table representing a *simulated* AI attention distribution.  This should reflect the expected focus areas for the most likely diagnosis, based on the known importance of different features.  Provide percentages for:
    *   Optic Disc (Total)
        *   Cup
        *   Neuroretinal Rim (subdivided by region if significant differences exist)
    *   Peripapillary Atrophy
    *   Vessels
    *   Macula
    *   Periphery

6.  **Summary and Impression:**  Provide a concise summary of the key findings and the overall impression.

7. **Recommendations:**
     *   Provide specific, actionable recommendations based on the image findings.
     *    If referral is warranted, clearly state the urgency and the type of specialist.
     *   List any recommended investigations (e.g., OCT, visual fields).

8.  **Disclaimer:** Include a disclaimer stating that the report is based on image analysis alone and does not replace a full clinical examination.

9. **HTML Structure:**  Use semantic HTML elements (h1-h3, p, ol, ul, table, div) to create a well-structured, readable report.  Include:
    *  A report header with a title ("EyeUnit.ai | AI for Ophthalmology") and a logo placeholder.
    *  An image comparison section displaying the original fundus image and a placeholder for a heatmap (a canvas element with id "heatmapCanvas"). No actual heatmap generation is required; the canvas is a placeholder.
    * A placeholder for patient information(PATIENT ID, NAME, AGE, DATE OF EXAM)
    *  Clearly labeled sections for each part of the analysis.
    *  Tables for the "Overall Analysis Coverage" and "AI-Driven Attention Metrics."

10. **CSS Styling:**  Apply CSS styles to make the report visually appealing and professional.  The report should be suitable for both screen viewing and printing (use a `@media print` block to optimize for print).
     * **Crucial Details:**
     * **PATIENT ID, NAME, AGE and DATE OF EXAM**

11. **Crucial Details:** Output ONLY the complete HTML code. Do not provide any surrounding text or explanations. Focus solely on generating the HTML report.
12. **IMG SOURCE:** Use this image as the image source: `<img src="https://i.imgur.com/kZ35oQV.jpg" alt="Original Fundus  
"""      ,          "equation.png",
            ],
        ],
        inputs=[question_input, image_input],
    )
    
        
    gr.Markdown(value="# Text-to-Image Generation")

    
    
    with gr.Row():
        cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
        t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")

    prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)")
    seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)

    generation_button = gr.Button("Generate Images")

    image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)

    examples_t2i = gr.Examples(
        label="Text to image generation examples.",
        examples=[
            "Master shifu racoon wearing drip attire as a street gangster.",
            "The face of a beautiful girl",
            "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
            "A glass of red wine on a reflective surface.",
            "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
            "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
        ],
        inputs=prompt_input,
    )
    
    understanding_button.click(
        multimodal_understanding,
        inputs=[image_input, question_input, und_seed_input, top_p, temperature],
        outputs=understanding_output
    )
    
    generation_button.click(
        fn=generate_image,
        inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
        outputs=image_output
    )

demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")