File size: 21,517 Bytes
1d5bb62
 
6d4bcdf
1d5bb62
6d4bcdf
1d5bb62
 
 
 
 
 
 
6d4bcdf
1d5bb62
 
 
 
 
 
 
 
6d4bcdf
1d5bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4bcdf
 
 
 
1d5bb62
 
 
 
 
6d4bcdf
1d5bb62
 
 
 
 
 
 
 
6d4bcdf
1d5bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4bcdf
 
 
 
 
 
1d5bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4bcdf
1d5bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4bcdf
 
 
 
 
 
 
 
 
1d5bb62
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import tempfile

import gradio as gr
import numpy as np
import spaces
import torch
import trimesh
import xatlas
from PIL import Image

from .render_utils import (get_mvp_matrix, get_pure_texture, render_geo_map,
                           render_geo_views_tensor, render_views, setup_lights)
from utils.file_utils import save_tensor_to_file


class Mesh:
    def __init__(self, mesh_path=None, uv_tool="xAtlas", device='cuda', progress=gr.Progress()):
        """
        Initialize the Mesh object with a mesh file path.
        :param mesh_path: Path to the mesh file (e.g., .obj or .glb).
        """
        self._device = device
        if mesh_path is not None:
            # Initialize _parts dictionary to store all parts
            self._parts = {}
            
            if mesh_path.endswith('.obj'):
                progress(0., f"Loading mesh in .obj format...")
                mesh_data = trimesh.load(mesh_path, process=False)
                
                # Check if it's a mesh list (multi-part obj)
                if isinstance(mesh_data, list):
                    progress(0.1, f"Handling part list...")
                    for i, mesh_part in enumerate(mesh_data):
                        self._add_part_to_parts(f"part_{i}", mesh_part)
                # Check if it's a Scene (another multi-part format)
                elif isinstance(mesh_data, trimesh.Scene):
                    progress(0.1, f"Handling Scenes...")
                    geometry = mesh_data.geometry
                    if len(geometry) > 0:
                        for key, mesh_part in geometry.items():
                            self._add_part_to_parts(key, mesh_part)
                    else:
                        raise ValueError("Empty scene, no mesh data found.")
                else:
                    # Single part obj
                    progress(0.1, f"Handling single part...")
                    self._add_part_to_parts("part_0", mesh_data)
            
            elif mesh_path.endswith('.glb'):
                progress(0., f"Loading mesh in .glb format...")
                mesh_loaded = trimesh.load(mesh_path)
                
                # Check if it's a Scene (multi-part glb)
                if isinstance(mesh_loaded, trimesh.Scene):
                    progress(0.1, f"Handling Scenes...")
                    geometry = mesh_loaded.geometry
                    if len(geometry) > 0:
                        for key, mesh_part in geometry.items():
                            self._add_part_to_parts(key, mesh_part)
                    else:
                        raise ValueError("Empty scene, no mesh data found.")
                else:
                    # Single part glb
                    progress(0.1, f"Handling single part...")
                    self._add_part_to_parts("part_0", mesh_loaded)
            else:
                raise ValueError(f"Unsupported file format: {mesh_path}")
            
            # Automatically merge all parts during initialization
            progress(0.2, f"Merging if the mesh have multiple parts.")
            self._merge_parts_internal()
        else:
            raise ValueError("Mesh path cannot be None.")
        self.to(self.device)  # Move to the specified device
        
        # Initialize transformation flags
        self._upside_down_applied = False
        
        # UV parameterization
        if self.has_multi_parts or not self.has_uv:
            progress(0.4, f"Using {uv_tool} for UV parameterization. It may take quite a while (several minutes), if there are many faces. We STRONLY recommend using a mesh with UV parameterization.")
            if uv_tool == "xAtlas":
                self.uv_xatlas_mapping() # Use default parameters
            elif uv_tool == "UVAtlas":
                raise NotImplementedError("UVAtlas parameterization is not implemented yet.")
            else:
                raise ValueError("Unsupported UV parameterization tool.")
            print("UV parameterization completed.")
        else:
            progress(0.4, f"The model has SINGLE UV parameterization, no need to reparameterize.")
            self._vmapping = None  # No vmapping needed when not reparameterizing
    
    @property
    def device(self):
        return self._device

    def to(self, device):
        """
        Move the mesh data to the specified device.
        :param device: The target device (e.g., 'cuda' or 'cpu').
        """
        self._device = device
        self._v_pos = self._v_pos.to(device)
        self._t_pos_idx = self._t_pos_idx.to(device)
        if self._v_tex is not None:
            self._v_tex = self._v_tex.to(device)
            self._t_tex_idx = self._t_tex_idx.to(device)
        if hasattr(self, '_vmapping') and self._vmapping is not None:
            self._vmapping = self._vmapping.to(device)
        self._v_normal = self._v_normal.to(device)
        return self

    @property
    def has_multi_parts(self):
        """
        Check if the mesh has multiple parts.
        :return: Boolean indicating whether the mesh has multiple parts.
        """
        # If _parts is None, it means already merged, not multi-part
        if self._parts is None:
            return False
        return len(self._parts) > 1

    @property
    def v_pos(self):
        """Vertex positions property."""
        return self._v_pos
    
    @v_pos.setter
    def v_pos(self, value):
        self._v_pos = value
    
    @property
    def t_pos_idx(self):
        """Triangle position indices property."""
        return self._t_pos_idx
    
    @t_pos_idx.setter
    def t_pos_idx(self, value):
        self._t_pos_idx = value
    
    @property
    def v_tex(self):
        """Vertex texture coordinates property."""
        return self._v_tex
    
    @v_tex.setter
    def v_tex(self, value):
        self._v_tex = value
    
    @property
    def t_tex_idx(self):
        """Triangle texture indices property."""
        return self._t_tex_idx
    
    @t_tex_idx.setter
    def t_tex_idx(self, value):
        self._t_tex_idx = value
    
    @property
    def v_normal(self):
        """Vertex normals property."""
        return self._v_normal
    
    @v_normal.setter
    def v_normal(self, value):
        self._v_normal = value
    
    @property
    def has_uv(self):
        """
        Check if the mesh has a valid UV mapping.
        :return: Boolean indicating whether the mesh has UV mapping.
        """
        return self.v_tex is not None
    
    def uv_xatlas_mapping(self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {}):
        # Merged mesh, directly add_mesh as a whole
        atlas = xatlas.Atlas()
        v_pos_np = self.v_pos.detach().cpu().numpy()
        t_pos_idx_np = self.t_pos_idx.cpu().numpy()
        atlas.add_mesh(v_pos_np, t_pos_idx_np)

        # Set reasonable pack parameters to avoid overlap
        co = xatlas.ChartOptions()
        po = xatlas.PackOptions()
        # Recommended default parameters
        if 'resolution' not in xatlas_pack_options:
            po.resolution = 1024  # or larger
        if 'padding' not in xatlas_pack_options:
            po.padding = 2
        for k, v in xatlas_chart_options.items():
            setattr(co, k, v)
        for k, v in xatlas_pack_options.items():
            setattr(po, k, v)
        atlas.generate(co, po)

        # Get unpacked data
        vmapping, indices, uvs = atlas.get_mesh(0)
        # vmapping: new UV vertex -> original mesh vertex
        # indices: new triangle face indices (based on new UV vertices)
        # uvs: new UV vertex coordinates
        device = self.v_pos.device
        vmapping = torch.from_numpy(vmapping.astype(np.uint64, casting="same_kind").view(np.int64)).to(device).long()
        uvs = torch.from_numpy(uvs).to(device).float()
        indices = torch.from_numpy(indices.astype(np.uint64, casting="same_kind").view(np.int64)).to(device).long()

        self.v_tex = uvs  # new UV vertices
        self.t_tex_idx = indices  # new triangle face indices (based on UV vertices)
        self._vmapping = vmapping  # save UV vertex to original vertex mapping for export
    
    def normalize(self):
        """
        Normalize mesh vertices to [-1, 1] range.
        """
        vertices = self.v_pos
        bounding_box_max = vertices.max(0)[0]
        bounding_box_min = vertices.min(0)[0]
        mesh_scale = 2.0  # Scale to [-1, 1]
        scale = mesh_scale / ((bounding_box_max - bounding_box_min).max() + 1e-6)
        center_offset = (bounding_box_max + bounding_box_min) * 0.5
        self.v_pos = (vertices - center_offset) * scale
    
    def vertex_transform(self):
        """
        Apply coordinate transformation to mesh vertices and normals.
        """
        # Transform normals
        pre_normals = self.v_normal
        normals = torch.clone(pre_normals)
        normals[:, 1] = -pre_normals[:, 2]  # -z --> y
        normals[:, 2] = pre_normals[:, 1]  # y --> z
        
        # Transform vertices
        pre_vertices = self.v_pos
        vertices = torch.clone(pre_vertices)
        vertices[:, 1] = -pre_vertices[:, 2]  # -z --> y
        vertices[:, 2] = pre_vertices[:, 1]  # y --> z
        
        # Update mesh
        self.v_normal = normals
        self.v_pos = vertices

    def vertex_transform_y2x(self):
        """
        Apply coordinate transformation to mesh vertices and normals.
        """
        # Transform normals
        pre_normals = self.v_normal
        normals = torch.clone(pre_normals)
        normals[:, 1] = -pre_normals[:, 0]  # -x --> y
        normals[:, 0] = pre_normals[:, 1]  # y --> x
        
        # Transform vertices
        pre_vertices = self.v_pos
        vertices = torch.clone(pre_vertices)
        vertices[:, 1] = -pre_vertices[:, 0]  # -z --> y
        vertices[:, 0] = pre_vertices[:, 1]  # y --> z
        
        # 更新网格
        self.v_normal = normals
        self.v_pos = vertices

    def vertex_transform_z2x(self):
        """
        Apply coordinate transformation to mesh vertices and normals.
        """
        # 变换法向量
        pre_normals = self.v_normal
        normals = torch.clone(pre_normals)
        normals[:, 2] = -pre_normals[:, 0]  # -x --> z
        normals[:, 0] = pre_normals[:, 2]  # z --> x
        
        # 变换顶点
        pre_vertices = self.v_pos
        vertices = torch.clone(pre_vertices)
        vertices[:, 2] = -pre_vertices[:, 0]  # -z --> y
        vertices[:, 0] = pre_vertices[:, 2]  # y --> z
        
        # 更新网格
        self.v_normal = normals
        self.v_pos = vertices

    def vertex_transform_upsidedown(self):
        """
        Apply upside-down transformation to mesh vertices and normals.
        """
        # 变换法向量
        pre_normals = self.v_normal
        normals = torch.clone(pre_normals)
        normals[:, 2] = -pre_normals[:, 2]

        # 变换顶点
        pre_vertices = self.v_pos
        vertices = torch.clone(pre_vertices)
        vertices[:, 2] = -pre_vertices[:, 2]

        # 更新网格
        self.v_normal = normals
        self.v_pos = vertices
        # self.t_pos_idx = faces
        
        # 标记已应用上下翻转变换
        self._upside_down_applied = True
    
    def _add_part_to_parts(self, key, mesh_part):
        """
        将单个mesh部分添加到_parts字典中
        :param key: 部分的键名
        :param mesh_part: trimesh对象
        """
        # exclude PointCloud parts and empty parts
        if hasattr(mesh_part, 'vertices') and hasattr(mesh_part, 'faces') and len(mesh_part.vertices) > 0 and len(mesh_part.faces) > 0:
            raw_uv = getattr(mesh_part.visual, 'uv', None)
            processed_v_tex = None
            processed_t_tex_idx = None

            # 仅当UV数据存在且不为空时才处理
            if raw_uv is not None and np.asarray(raw_uv).size > 0 and np.asarray(raw_uv).shape[0] > 0:
                processed_v_tex = torch.tensor(raw_uv, dtype=torch.float32)
                # 假设当源数据提供UV时,t_tex_idx 与 t_pos_idx 使用相同的面索引
                # trimesh 通常提供每个顶点的UV
                processed_t_tex_idx = torch.tensor(mesh_part.faces, dtype=torch.int32)
            
            self._parts[key] = {
                'v_pos': torch.tensor(mesh_part.vertices, dtype=torch.float32),
                't_pos_idx': torch.tensor(mesh_part.faces, dtype=torch.int32),
                'v_tex': processed_v_tex,
                't_tex_idx': processed_t_tex_idx,
                'v_normal': torch.tensor(mesh_part.vertex_normals, dtype=torch.float32)
            }
    
    def _merge_parts_internal(self):
        """
        内部使用的合并函数,在初始化时自动调用
        将_parts中的所有部分合并为单一的mesh表示
        """
        # 如果没有部分或只有一个部分,简化处理
        if not self._parts:
            raise ValueError("No mesh parts.")
        elif len(self._parts) == 1:
            key = next(iter(self._parts))
            part = self._parts[key]
            self._v_pos = part['v_pos']
            self._t_pos_idx = part['t_pos_idx']
            self._v_tex = part['v_tex']
            self._t_tex_idx = part['t_tex_idx']
            self._v_normal = part['v_normal']
            self._parts = None  # 清理_parts字典,释放内存
            return

        # 初始化合并后的数据
        vertices = []
        faces = []
        normals = []
        
        # Record vertex count for each part, used to adjust face indices
        v_count = 0
        
        # Iterate through all parts
        for key, part in self._parts.items():
            # Add vertices
            vertices.append(part['v_pos'])
            
            # Adjust face indices and add
            if len(faces) > 0:
                adjusted_faces = part['t_pos_idx'] + v_count
                faces.append(adjusted_faces)
            else:
                faces.append(part['t_pos_idx'])
            
            # Add normals
            normals.append(part['v_normal'])
            
            # Update vertex count
            v_count += part['v_pos'].shape[0]
        
        self._parts = None  # Clear _parts dictionary to free memory

        # Merge all data
        self._v_pos = torch.cat(vertices, dim=0)
        self._t_pos_idx = torch.cat(faces, dim=0)
        self._v_normal = torch.cat(normals, dim=0)
        self._v_tex = None  # multi-parts mesh must be reparameterized
        self._t_tex_idx = None  # multi-parts mesh must be reparameterized
        self._vmapping = None  # multi-parts mesh must be reparameterized

    @classmethod
    def export(cls, mesh, save_path=None, texture_map: Image.Image = None):
        """
        Exports the mesh to a GLB file.
        :param mesh: Mesh instance to export
        :param save_path: Optional path to save the GLB file. If None, a temporary file will be created.
        :param texture_map: Optional PIL.Image to use as the texture. If None, a default texture will be used.
        :return: Path to the exported GLB file.
        """
        # 由于传入的mesh一定是process过的,所以断言确保是单个part且有UV
        assert not mesh.has_multi_parts, "Mesh should be processed and merged to single part"
        assert mesh.has_uv, "Mesh should have UV mapping after processing"
        
        if save_path is None:
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
            save_path = temp_file.name
            temp_file.close()

        # 创建材质
        if texture_map is not None:
            if type(texture_map) is np.ndarray:
                texture_map = Image.fromarray(texture_map)
            assert type(texture_map) is Image.Image, "texture_map should be a PIL.Image"
            texture_map = texture_map.transpose(Image.FLIP_TOP_BOTTOM).convert("RGB")
            material = trimesh.visual.material.PBRMaterial(
                baseColorTexture=texture_map,
                baseColorFactor=[255, 255, 255, 255],  # 设置为白色以避免颜色混合
                metallicFactor=0.0,
                roughnessFactor=1.0
            )
        else:
            default_texture = Image.new("RGB", (1024, 1024), (200, 200, 200))
            material = trimesh.visual.texture.SimpleMaterial(image=default_texture)

        # If vmapping exists (processed by xatlas), need to rebuild vertices to match UV layout
        if hasattr(mesh, '_vmapping') and mesh._vmapping is not None:
            # Use xatlas-generated UV layout to rebuild mesh
            vertices = mesh.v_pos[mesh._vmapping].cpu().numpy()
            faces = mesh.t_tex_idx.cpu().numpy()
            uvs = mesh.v_tex.cpu().numpy()
        else:
            # Original UV mapping, directly use original vertices and faces
            vertices = mesh.v_pos.cpu().numpy()
            faces = mesh.t_pos_idx.cpu().numpy()
            uvs = mesh.v_tex.cpu().numpy()

        # If upside_down transformation was applied, need to apply face orientation correction
        if hasattr(mesh, '_upside_down_applied') and mesh._upside_down_applied:
            faces_corrected = faces.copy()
            faces_corrected[:, [1, 2]] = faces[:, [2, 1]]  # (0,1,2) -> (0,2,1)
            faces = faces_corrected

        # Apply inverse transformation to convert vertices from rendering coordinate system back to GLB coordinate system
        # This is the inverse of vertex_transform:
        # vertex_transform: y = -z, z = y
        # inverse transformation: y = z, z = -y
        vertices_export = vertices.copy()
        vertices_export[:, 1] = vertices[:, 2]   # z → y
        vertices_export[:, 2] = -vertices[:, 1]  # -y → z

        # Create Trimesh object and set texture
        mesh_export = trimesh.Trimesh(vertices=vertices_export, faces=faces, process=False)
        mesh_export.visual = trimesh.visual.TextureVisuals(uv=uvs, material=material)

        # Export GLB file
        mesh_export.export(file_obj=save_path, file_type='glb')
        
        return save_path

    @classmethod
    @spaces.GPU(duration=30)
    def process(cls, mesh_file, uv_tool="xAtlas", y2z=True, y2x=False, z2x=False, upside_down=False, img_size=(512, 512), uv_size=(1024, 1024), device='cuda', progress=gr.Progress()):
        """
        Handle the mesh processing, which includes normalization, parts merging, and UV mapping. 
        Then render the untextured mesh from four views.
        :param mesh_file: uploaded mesh file.
        :param uv_tool: the UV parameterization tool, default is "xAtlas".
        :return: rendered clay model images from four views.
        """
        # load mesh (automatically merge multiple parts)
        mesh: Mesh = cls(mesh_file, uv_tool, device, progress=progress)

        progress(0.7, f"Handling transformation and normalization...")
        # normalize mesh
        if y2z:
            mesh.vertex_transform()  # transform vertices and normals
        if y2x:
            mesh.vertex_transform_y2x()
        if z2x:
            mesh.vertex_transform_z2x()
        if upside_down:
            mesh.vertex_transform_upsidedown()
        mesh.normalize()
        
        # render preparation
        texture = get_pure_texture(uv_size).to(device) # tensor of shape (3, height, width)
        # lights = setup_lights()
        lights = None
        mvp_matrix, w2c = get_mvp_matrix(mesh)
        mvp_matrix = mvp_matrix.to(device)
        w2c = w2c.to(device)
        
        # render untextured mesh from four views
        # images = render_views(mesh, texture, mvp_matrix, lights, img_size) # PIL.Image
        progress(0.8, f"Rendering clay model views...")
        print(f"Rendering geometry views...")
        position_images, normal_images, mask_images = render_geo_views_tensor(mesh, mvp_matrix, img_size) # torch.Tensor # [batch_size, height, width, 3]
        progress(0.9, f"Rendering geometry maps...")
        print(f"Rendering geometry maps...")
        position_map, normal_map = render_geo_map(mesh)

        progress(1, f"Mesh processing completed.")
        position_map_path = save_tensor_to_file(position_map, prefix="position_map")
        normal_map_path = save_tensor_to_file(normal_map, prefix="normal_map")
        position_images_path = save_tensor_to_file(position_images, prefix="position_images")
        normal_images_path = save_tensor_to_file(normal_images, prefix="normal_images")
        mask_images_path = save_tensor_to_file(mask_images.squeeze(-1), prefix="mask_images")
        w2c_path = save_tensor_to_file(w2c, prefix="w2c")
        mvp_matrix_path = save_tensor_to_file(mvp_matrix, prefix="mvp_matrix")
        # Return mesh instance as is
        return position_map_path, normal_map_path, position_images_path, normal_images_path, mask_images_path, w2c_path, mesh.to("cpu"), mvp_matrix_path, "Mesh processing completed."
    

if __name__ == '__main__':
    glb_path = "/mnt/pfs/users/yuanze/projects/clean_seqtex/gradio/examples/multi_parts.glb"
    position_map, normal_map, position_images, normal_images, w2c = Mesh.process(glb_path)
    position_map.save("position_map.png")
    normal_map.save("normal_map.png")

    # 将 [-1, 1] 范围的normal_images save PIL
    # normal_images = rearrange(normal_images, "B H W C -> B C H W")
    # save_image(normal_images, "normal_images.png", normalize=True, value_range=(-1, 1))