File size: 21,943 Bytes
a207590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import datetime
from typing import List, Optional, Union

import numpy as np
import nvdiffrast.torch as dr
import torch
import torch.nn.functional as F
import trimesh
from PIL import Image
from torch import BoolTensor, FloatTensor

from . import logging
from .camera import Camera

logger = logging.get_logger(__name__)


def dot(x: torch.FloatTensor, y: torch.FloatTensor) -> torch.FloatTensor:
    return torch.sum(x * y, -1, keepdim=True)


@dataclass
class TexturedMesh:
    v_pos: torch.FloatTensor
    t_pos_idx: torch.LongTensor

    # texture coordinates
    v_tex: Optional[torch.FloatTensor] = None
    t_tex_idx: Optional[torch.LongTensor] = None

    # texture map
    texture: Optional[torch.FloatTensor] = None

    # vertices, faces after vertex merging
    _stitched_v_pos: Optional[torch.FloatTensor] = None
    _stitched_t_pos_idx: Optional[torch.LongTensor] = None

    _v_nrm: Optional[torch.FloatTensor] = None

    @property
    def v_nrm(self) -> torch.FloatTensor:
        if self._v_nrm is None:
            self._v_nrm = self._compute_vertex_normal()
        return self._v_nrm

    def set_stitched_mesh(
        self, v_pos: torch.FloatTensor, t_pos_idx: torch.LongTensor
    ) -> None:
        self._stitched_v_pos = v_pos
        self._stitched_t_pos_idx = t_pos_idx

    @property
    def stitched_v_pos(self) -> torch.FloatTensor:
        if self._stitched_v_pos is None:
            logger.warning("Stitched vertices not available, using original vertices!")
            return self.v_pos
        return self._stitched_v_pos

    @property
    def stitched_t_pos_idx(self) -> torch.LongTensor:
        if self._stitched_t_pos_idx is None:
            logger.warning("Stitched faces not available, using original faces!")
            return self.t_pos_idx
        return self._stitched_t_pos_idx

    def _compute_vertex_normal(self) -> torch.FloatTensor:
        if self._stitched_v_pos is None or self._stitched_t_pos_idx is None:
            logger.warning(
                "Stitched vertices and faces not available, computing vertex normals on original mesh, which can be erroneous!"
            )
            v_pos, t_pos_idx = self.v_pos, self.t_pos_idx
        else:
            v_pos, t_pos_idx = self._stitched_v_pos, self._stitched_t_pos_idx

        i0 = t_pos_idx[:, 0]
        i1 = t_pos_idx[:, 1]
        i2 = t_pos_idx[:, 2]

        v0 = v_pos[i0, :]
        v1 = v_pos[i1, :]
        v2 = v_pos[i2, :]

        face_normals = torch.cross(v1 - v0, v2 - v0)

        # Splat face normals to vertices
        v_nrm = torch.zeros_like(v_pos)
        v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

        # Normalize, replace zero (degenerated) normals with some default value
        v_nrm = torch.where(
            dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
        )
        v_nrm = F.normalize(v_nrm, dim=1)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(v_nrm))

        return v_nrm

    def to(self, device: Optional[str] = None):
        self.v_pos = self.v_pos.to(device)
        self.t_pos_idx = self.t_pos_idx.to(device)
        if self.v_tex is not None:
            self.v_tex = self.v_tex.to(device)
        if self.t_tex_idx is not None:
            self.t_tex_idx = self.t_tex_idx.to(device)
        if self.texture is not None:
            self.texture = self.texture.to(device)
        if self._stitched_v_pos is not None:
            self._stitched_v_pos = self._stitched_v_pos.to(device)
        if self._stitched_t_pos_idx is not None:
            self._stitched_t_pos_idx = self._stitched_t_pos_idx.to(device)
        if self._v_nrm is not None:
            self._v_nrm = self._v_nrm.to(device)


def load_mesh(
    mesh_path: str,
    rescale: bool = False,
    move_to_center: bool = False,
    scale: float = 0.5,
    flip_uv: bool = True,
    merge_vertices: bool = True,
    default_uv_size: int = 2048,
    shape_init_mesh_up: str = "+y",
    shape_init_mesh_front: str = "+x",
    front_x_to_y: bool = False,
    device: Optional[str] = None,
    return_transform: bool = False,
) -> TexturedMesh:
    scene = trimesh.load(mesh_path, force="mesh", process=False)
    if isinstance(scene, trimesh.Trimesh):
        mesh = scene
    elif isinstance(scene, trimesh.scene.Scene):
        mesh = trimesh.Trimesh()
        for obj in scene.geometry.values():
            mesh = trimesh.util.concatenate([mesh, obj])
    else:
        raise ValueError(f"Unknown mesh type at {mesh_path}.")

    # move to center
    if move_to_center:
        centroid = mesh.vertices.mean(0)
        mesh.vertices = mesh.vertices - centroid

    # rescale
    if rescale:
        max_scale = np.abs(mesh.vertices).max()
        mesh.vertices = mesh.vertices / max_scale * scale

    dirs = ["+x", "+y", "+z", "-x", "-y", "-z"]
    dir2vec = {
        "+x": np.array([1, 0, 0]),
        "+y": np.array([0, 1, 0]),
        "+z": np.array([0, 0, 1]),
        "-x": np.array([-1, 0, 0]),
        "-y": np.array([0, -1, 0]),
        "-z": np.array([0, 0, -1]),
    }
    if shape_init_mesh_up not in dirs or shape_init_mesh_front not in dirs:
        raise ValueError(
            f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}."
        )
    if shape_init_mesh_up[1] == shape_init_mesh_front[1]:
        raise ValueError(
            "shape_init_mesh_up and shape_init_mesh_front must be orthogonal."
        )
    z_, x_ = (
        dir2vec[shape_init_mesh_up],
        dir2vec[shape_init_mesh_front],
    )
    y_ = np.cross(z_, x_)
    std2mesh = np.stack([x_, y_, z_], axis=0).T
    mesh2std = np.linalg.inv(std2mesh)
    mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T
    if front_x_to_y:
        x = mesh.vertices[:, 1].copy()
        y = -mesh.vertices[:, 0].copy()
        mesh.vertices[:, 0] = x
        mesh.vertices[:, 1] = y

    v_pos = torch.tensor(mesh.vertices, dtype=torch.float32)
    t_pos_idx = torch.tensor(mesh.faces, dtype=torch.int64)

    if hasattr(mesh, "visual") and hasattr(mesh.visual, "uv"):
        v_tex = torch.tensor(mesh.visual.uv, dtype=torch.float32)
        if flip_uv:
            v_tex[:, 1] = 1.0 - v_tex[:, 1]
        t_tex_idx = t_pos_idx.clone()
        if (
            hasattr(mesh.visual.material, "baseColorTexture")
            and mesh.visual.material.baseColorTexture
        ):
            texture = torch.tensor(
                np.array(mesh.visual.material.baseColorTexture) / 255.0,
                dtype=torch.float32,
            )[..., :3]
        else:
            texture = torch.zeros(
                (default_uv_size, default_uv_size, 3), dtype=torch.float32
            )
    else:
        v_tex = None
        t_tex_idx = None
        texture = None

    textured_mesh = TexturedMesh(
        v_pos=v_pos,
        t_pos_idx=t_pos_idx,
        v_tex=v_tex,
        t_tex_idx=t_tex_idx,
        texture=texture,
    )

    if merge_vertices:
        mesh.merge_vertices(merge_tex=True)
        textured_mesh.set_stitched_mesh(
            torch.tensor(mesh.vertices, dtype=torch.float32),
            torch.tensor(mesh.faces, dtype=torch.int64),
        )

    textured_mesh.to(device)

    if return_transform:
        return textured_mesh, np.array(centroid), max_scale / scale

    return textured_mesh


@dataclass
class RenderOutput:
    attr: Optional[torch.FloatTensor] = None
    mask: Optional[torch.BoolTensor] = None
    depth: Optional[torch.FloatTensor] = None
    normal: Optional[torch.FloatTensor] = None
    pos: Optional[torch.FloatTensor] = None


class NVDiffRastContextWrapper:
    def __init__(self, device: str, context_type: str = "gl"):
        if context_type == "gl":
            self.ctx = dr.RasterizeGLContext(device=device)
        elif context_type == "cuda":
            self.ctx = dr.RasterizeCudaContext(device=device)
        else:
            raise NotImplementedError

    def rasterize(self, pos, tri, resolution, ranges=None, grad_db=True):
        """
        Rasterize triangles.

        All input tensors must be contiguous and reside in GPU memory except for the ranges tensor that, if specified, has to reside in CPU memory. The output tensors will be contiguous and reside in GPU memory.

        Arguments:
        glctx	Rasterizer context of type RasterizeGLContext or RasterizeCudaContext.
        pos	Vertex position tensor with dtype torch.float32. To enable range mode, this tensor should have a 2D shape [num_vertices, 4]. To enable instanced mode, use a 3D shape [minibatch_size, num_vertices, 4].
        tri	Triangle tensor with shape [num_triangles, 3] and dtype torch.int32.
        resolution	Output resolution as integer tuple (height, width).
        ranges	In range mode, tensor with shape [minibatch_size, 2] and dtype torch.int32, specifying start indices and counts into tri. Ignored in instanced mode.
        grad_db	Propagate gradients of image-space derivatives of barycentrics into pos in backward pass. Ignored if using an OpenGL context that was not configured to output image-space derivatives.
        Returns:
        A tuple of two tensors. The first output tensor has shape [minibatch_size, height, width, 4] and contains the main rasterizer output in order (u, v, z/w, triangle_id). If the OpenGL context was configured to output image-space derivatives of barycentrics, the second output tensor will also have shape [minibatch_size, height, width, 4] and contain said derivatives in order (du/dX, du/dY, dv/dX, dv/dY). Otherwise it will be an empty tensor with shape [minibatch_size, height, width, 0].
        """
        return dr.rasterize(
            self.ctx, pos.float(), tri.int(), resolution, ranges, grad_db
        )

    def interpolate(self, attr, rast, tri, rast_db=None, diff_attrs=None):
        """
        Interpolate vertex attributes.

        All input tensors must be contiguous and reside in GPU memory. The output tensors will be contiguous and reside in GPU memory.

        Arguments:
        attr	Attribute tensor with dtype torch.float32. Shape is [num_vertices, num_attributes] in range mode, or [minibatch_size, num_vertices, num_attributes] in instanced mode. Broadcasting is supported along the minibatch axis.
        rast	Main output tensor from rasterize().
        tri	Triangle tensor with shape [num_triangles, 3] and dtype torch.int32.
        rast_db	(Optional) Tensor containing image-space derivatives of barycentrics, i.e., the second output tensor from rasterize(). Enables computing image-space derivatives of attributes.
        diff_attrs	(Optional) List of attribute indices for which image-space derivatives are to be computed. Special value 'all' is equivalent to list [0, 1, ..., num_attributes - 1].
        Returns:
        A tuple of two tensors. The first output tensor contains interpolated attributes and has shape [minibatch_size, height, width, num_attributes]. If rast_db and diff_attrs were specified, the second output tensor contains the image-space derivatives of the selected attributes and has shape [minibatch_size, height, width, 2 * len(diff_attrs)]. The derivatives of the first selected attribute A will be on channels 0 and 1 as (dA/dX, dA/dY), etc. Otherwise, the second output tensor will be an empty tensor with shape [minibatch_size, height, width, 0].
        """
        return dr.interpolate(attr.float(), rast, tri.int(), rast_db, diff_attrs)

    def texture(
        self,
        tex,
        uv,
        uv_da=None,
        mip_level_bias=None,
        mip=None,
        filter_mode="auto",
        boundary_mode="wrap",
        max_mip_level=None,
    ):
        """
        Perform texture sampling.

        All input tensors must be contiguous and reside in GPU memory. The output tensor will be contiguous and reside in GPU memory.

        Arguments:
        tex	Texture tensor with dtype torch.float32. For 2D textures, must have shape [minibatch_size, tex_height, tex_width, tex_channels]. For cube map textures, must have shape [minibatch_size, 6, tex_height, tex_width, tex_channels] where tex_width and tex_height are equal. Note that boundary_mode must also be set to 'cube' to enable cube map mode. Broadcasting is supported along the minibatch axis.
        uv	Tensor containing per-pixel texture coordinates. When sampling a 2D texture, must have shape [minibatch_size, height, width, 2]. When sampling a cube map texture, must have shape [minibatch_size, height, width, 3].
        uv_da	(Optional) Tensor containing image-space derivatives of texture coordinates. Must have same shape as uv except for the last dimension that is to be twice as long.
        mip_level_bias	(Optional) Per-pixel bias for mip level selection. If uv_da is omitted, determines mip level directly. Must have shape [minibatch_size, height, width].
        mip	(Optional) Preconstructed mipmap stack from a texture_construct_mip() call, or a list of tensors specifying a custom mipmap stack. When specifying a custom mipmap stack, the tensors in the list must follow the same format as tex except for width and height that must follow the usual rules for mipmap sizes. The base level texture is still supplied in tex and must not be included in the list. Gradients of a custom mipmap stack are not automatically propagated to base texture but the mipmap tensors will receive gradients of their own. If a mipmap stack is not specified but the chosen filter mode requires it, the mipmap stack is constructed internally and discarded afterwards.
        filter_mode	Texture filtering mode to be used. Valid values are 'auto', 'nearest', 'linear', 'linear-mipmap-nearest', and 'linear-mipmap-linear'. Mode 'auto' selects 'linear' if neither uv_da or mip_level_bias is specified, and 'linear-mipmap-linear' when at least one of them is specified, these being the highest-quality modes possible depending on the availability of the image-space derivatives of the texture coordinates or direct mip level information.
        boundary_mode	Valid values are 'wrap', 'clamp', 'zero', and 'cube'. If tex defines a cube map, this must be set to 'cube'. The default mode 'wrap' takes fractional part of texture coordinates. Mode 'clamp' clamps texture coordinates to the centers of the boundary texels. Mode 'zero' virtually extends the texture with all-zero values in all directions.
        max_mip_level	If specified, limits the number of mipmaps constructed and used in mipmap-based filter modes.
        Returns:
        A tensor containing the results of the texture sampling with shape [minibatch_size, height, width, tex_channels]. Cube map fetches with invalid uv coordinates (e.g., zero vectors) output all zeros and do not propagate gradients.
        """
        return dr.texture(
            tex.float(),
            uv.float(),
            uv_da,
            mip_level_bias,
            mip,
            filter_mode,
            boundary_mode,
            max_mip_level,
        )

    def antialias(
        self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0
    ):
        """
        Perform antialiasing.

        All input tensors must be contiguous and reside in GPU memory. The output tensor will be contiguous and reside in GPU memory.

        Note that silhouette edge determination is based on vertex indices in the triangle tensor. For it to work properly, a vertex belonging to multiple triangles must be referred to using the same vertex index in each triangle. Otherwise, nvdiffrast will always classify the adjacent edges as silhouette edges, which leads to bad performance and potentially incorrect gradients. If you are unsure whether your data is good, check which pixels are modified by the antialias operation and compare to the example in the documentation.

        Arguments:
        color	Input image to antialias with shape [minibatch_size, height, width, num_channels].
        rast	Main output tensor from rasterize().
        pos	Vertex position tensor used in the rasterization operation.
        tri	Triangle tensor used in the rasterization operation.
        topology_hash	(Optional) Preconstructed topology hash for the triangle tensor. If not specified, the topology hash is constructed internally and discarded afterwards.
        pos_gradient_boost	(Optional) Multiplier for gradients propagated to pos.
        Returns:
        A tensor containing the antialiased image with the same shape as color input tensor.
        """
        return dr.antialias(
            color.float(),
            rast,
            pos.float(),
            tri.int(),
            topology_hash,
            pos_gradient_boost,
        )


def get_clip_space_position(pos: torch.FloatTensor, mvp_mtx: torch.FloatTensor):
    pos_homo = torch.cat([pos, torch.ones([pos.shape[0], 1]).to(pos)], dim=-1)
    return torch.matmul(pos_homo, mvp_mtx.permute(0, 2, 1))


def transform_points_homo(pos: torch.FloatTensor, mtx: torch.FloatTensor):
    batch_size = pos.shape[0]
    pos_shape = pos.shape[1:-1]
    pos = pos.reshape(batch_size, -1, 3)
    pos_homo = torch.cat([pos, torch.ones_like(pos[..., 0:1])], dim=-1)
    pos = (pos_homo.unsqueeze(2) * mtx.unsqueeze(1)).sum(-1)[..., :3]
    pos = pos.reshape(batch_size, *pos_shape, 3)
    return pos


class DepthNormalizationStrategy(ABC):
    @abstractmethod
    def __init__(self, *args, **kwargs):
        pass

    @abstractmethod
    def __call__(
        self, depth: torch.FloatTensor, mask: torch.BoolTensor
    ) -> torch.FloatTensor:
        pass


class DepthControlNetNormalization(DepthNormalizationStrategy):
    def __init__(
        self, far_clip: float = 0.25, near_clip: float = 1.0, bg_value: float = 0.0
    ):
        self.far_clip = far_clip
        self.near_clip = near_clip
        self.bg_value = bg_value

    def __call__(
        self, depth: torch.FloatTensor, mask: torch.BoolTensor
    ) -> torch.FloatTensor:
        batch_size = depth.shape[0]
        min_depth = depth.view(batch_size, -1).min(dim=-1)[0][:, None, None]
        max_depth = depth.view(batch_size, -1).max(dim=-1)[0][:, None, None]
        depth = 1.0 - ((depth - min_depth) / (max_depth - min_depth + 1e-5)).clamp(
            0.0, 1.0
        )
        depth = depth * (self.near_clip - self.far_clip) + self.far_clip
        depth[~mask] = self.bg_value
        return depth


class Zero123PlusPlusNormalization(DepthNormalizationStrategy):
    def __init__(self, bg_value: float = 0.8):
        self.bg_value = bg_value

    def __call__(self, depth: FloatTensor, mask: BoolTensor) -> FloatTensor:
        batch_size = depth.shape[0]
        min_depth = depth.view(batch_size, -1).min(dim=-1)[0][:, None, None]
        max_depth = depth.view(batch_size, -1).max(dim=-1)[0][:, None, None]
        depth = ((depth - min_depth) / (max_depth - min_depth + 1e-5)).clamp(0.0, 1.0)
        depth[~mask] = self.bg_value
        return depth


class SimpleNormalization(DepthNormalizationStrategy):
    def __init__(
        self,
        scale: float = 1.0,
        offset: float = -1.0,
        clamp: bool = True,
        bg_value: float = 1.0,
    ):
        self.scale = scale
        self.offset = offset
        self.clamp = clamp
        self.bg_value = bg_value

    def __call__(self, depth: FloatTensor, mask: BoolTensor) -> FloatTensor:
        depth = depth * self.scale + self.offset
        if self.clamp:
            depth = depth.clamp(0.0, 1.0)
        depth[~mask] = self.bg_value
        return depth


def render(
    ctx: NVDiffRastContextWrapper,
    mesh: TexturedMesh,
    cam: Camera,
    height: int,
    width: int,
    render_attr: bool = True,
    render_depth: bool = True,
    render_normal: bool = True,
    depth_normalization_strategy: DepthNormalizationStrategy = DepthControlNetNormalization(),
    attr_background: Union[float, torch.FloatTensor] = 0.5,
    antialias_attr=False,
    normal_background: Union[float, torch.FloatTensor] = 0.5,
    texture_override=None,
    texture_filter_mode: str = "linear",
) -> RenderOutput:
    output_dict = {}

    v_pos_clip = get_clip_space_position(mesh.v_pos, cam.mvp_mtx)
    rast, _ = ctx.rasterize(v_pos_clip, mesh.t_pos_idx, (height, width), grad_db=True)
    mask = rast[..., 3] > 0

    gb_pos, _ = ctx.interpolate(mesh.v_pos[None], rast, mesh.t_pos_idx)
    output_dict.update({"mask": mask, "pos": gb_pos})

    if render_depth:
        gb_pos_vs = transform_points_homo(gb_pos, cam.w2c)
        gb_depth = -gb_pos_vs[..., 2]
        # set background pixels to min depth value for correct min/max calculation
        gb_depth = torch.where(
            mask,
            gb_depth,
            gb_depth.view(gb_depth.shape[0], -1).min(dim=-1)[0][:, None, None],
        )
        gb_depth = depth_normalization_strategy(gb_depth, mask)
        output_dict["depth"] = gb_depth

    if render_attr:
        tex_c, _ = ctx.interpolate(mesh.v_tex[None], rast, mesh.t_tex_idx)
        texture = (
            texture_override[None]
            if texture_override is not None
            else mesh.texture[None]
        )
        gb_rgb_fg = ctx.texture(texture, tex_c, filter_mode=texture_filter_mode)
        gb_rgb_bg = torch.ones_like(gb_rgb_fg) * attr_background
        gb_rgb = torch.where(mask[..., None], gb_rgb_fg, gb_rgb_bg)
        if antialias_attr:
            gb_rgb = ctx.antialias(gb_rgb, rast, v_pos_clip, mesh.t_pos_idx)
        output_dict["attr"] = gb_rgb

    if render_normal:
        gb_nrm, _ = ctx.interpolate(mesh.v_nrm[None], rast, mesh.stitched_t_pos_idx)
        gb_nrm = F.normalize(gb_nrm, dim=-1, p=2)
        gb_nrm[~mask] = normal_background
        output_dict["normal"] = gb_nrm

    return RenderOutput(**output_dict)