Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,943 Bytes
a207590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import datetime
from typing import List, Optional, Union
import numpy as np
import nvdiffrast.torch as dr
import torch
import torch.nn.functional as F
import trimesh
from PIL import Image
from torch import BoolTensor, FloatTensor
from . import logging
from .camera import Camera
logger = logging.get_logger(__name__)
def dot(x: torch.FloatTensor, y: torch.FloatTensor) -> torch.FloatTensor:
return torch.sum(x * y, -1, keepdim=True)
@dataclass
class TexturedMesh:
v_pos: torch.FloatTensor
t_pos_idx: torch.LongTensor
# texture coordinates
v_tex: Optional[torch.FloatTensor] = None
t_tex_idx: Optional[torch.LongTensor] = None
# texture map
texture: Optional[torch.FloatTensor] = None
# vertices, faces after vertex merging
_stitched_v_pos: Optional[torch.FloatTensor] = None
_stitched_t_pos_idx: Optional[torch.LongTensor] = None
_v_nrm: Optional[torch.FloatTensor] = None
@property
def v_nrm(self) -> torch.FloatTensor:
if self._v_nrm is None:
self._v_nrm = self._compute_vertex_normal()
return self._v_nrm
def set_stitched_mesh(
self, v_pos: torch.FloatTensor, t_pos_idx: torch.LongTensor
) -> None:
self._stitched_v_pos = v_pos
self._stitched_t_pos_idx = t_pos_idx
@property
def stitched_v_pos(self) -> torch.FloatTensor:
if self._stitched_v_pos is None:
logger.warning("Stitched vertices not available, using original vertices!")
return self.v_pos
return self._stitched_v_pos
@property
def stitched_t_pos_idx(self) -> torch.LongTensor:
if self._stitched_t_pos_idx is None:
logger.warning("Stitched faces not available, using original faces!")
return self.t_pos_idx
return self._stitched_t_pos_idx
def _compute_vertex_normal(self) -> torch.FloatTensor:
if self._stitched_v_pos is None or self._stitched_t_pos_idx is None:
logger.warning(
"Stitched vertices and faces not available, computing vertex normals on original mesh, which can be erroneous!"
)
v_pos, t_pos_idx = self.v_pos, self.t_pos_idx
else:
v_pos, t_pos_idx = self._stitched_v_pos, self._stitched_t_pos_idx
i0 = t_pos_idx[:, 0]
i1 = t_pos_idx[:, 1]
i2 = t_pos_idx[:, 2]
v0 = v_pos[i0, :]
v1 = v_pos[i1, :]
v2 = v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
)
v_nrm = F.normalize(v_nrm, dim=1)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
def to(self, device: Optional[str] = None):
self.v_pos = self.v_pos.to(device)
self.t_pos_idx = self.t_pos_idx.to(device)
if self.v_tex is not None:
self.v_tex = self.v_tex.to(device)
if self.t_tex_idx is not None:
self.t_tex_idx = self.t_tex_idx.to(device)
if self.texture is not None:
self.texture = self.texture.to(device)
if self._stitched_v_pos is not None:
self._stitched_v_pos = self._stitched_v_pos.to(device)
if self._stitched_t_pos_idx is not None:
self._stitched_t_pos_idx = self._stitched_t_pos_idx.to(device)
if self._v_nrm is not None:
self._v_nrm = self._v_nrm.to(device)
def load_mesh(
mesh_path: str,
rescale: bool = False,
move_to_center: bool = False,
scale: float = 0.5,
flip_uv: bool = True,
merge_vertices: bool = True,
default_uv_size: int = 2048,
shape_init_mesh_up: str = "+y",
shape_init_mesh_front: str = "+x",
front_x_to_y: bool = False,
device: Optional[str] = None,
return_transform: bool = False,
) -> TexturedMesh:
scene = trimesh.load(mesh_path, force="mesh", process=False)
if isinstance(scene, trimesh.Trimesh):
mesh = scene
elif isinstance(scene, trimesh.scene.Scene):
mesh = trimesh.Trimesh()
for obj in scene.geometry.values():
mesh = trimesh.util.concatenate([mesh, obj])
else:
raise ValueError(f"Unknown mesh type at {mesh_path}.")
# move to center
if move_to_center:
centroid = mesh.vertices.mean(0)
mesh.vertices = mesh.vertices - centroid
# rescale
if rescale:
max_scale = np.abs(mesh.vertices).max()
mesh.vertices = mesh.vertices / max_scale * scale
dirs = ["+x", "+y", "+z", "-x", "-y", "-z"]
dir2vec = {
"+x": np.array([1, 0, 0]),
"+y": np.array([0, 1, 0]),
"+z": np.array([0, 0, 1]),
"-x": np.array([-1, 0, 0]),
"-y": np.array([0, -1, 0]),
"-z": np.array([0, 0, -1]),
}
if shape_init_mesh_up not in dirs or shape_init_mesh_front not in dirs:
raise ValueError(
f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}."
)
if shape_init_mesh_up[1] == shape_init_mesh_front[1]:
raise ValueError(
"shape_init_mesh_up and shape_init_mesh_front must be orthogonal."
)
z_, x_ = (
dir2vec[shape_init_mesh_up],
dir2vec[shape_init_mesh_front],
)
y_ = np.cross(z_, x_)
std2mesh = np.stack([x_, y_, z_], axis=0).T
mesh2std = np.linalg.inv(std2mesh)
mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T
if front_x_to_y:
x = mesh.vertices[:, 1].copy()
y = -mesh.vertices[:, 0].copy()
mesh.vertices[:, 0] = x
mesh.vertices[:, 1] = y
v_pos = torch.tensor(mesh.vertices, dtype=torch.float32)
t_pos_idx = torch.tensor(mesh.faces, dtype=torch.int64)
if hasattr(mesh, "visual") and hasattr(mesh.visual, "uv"):
v_tex = torch.tensor(mesh.visual.uv, dtype=torch.float32)
if flip_uv:
v_tex[:, 1] = 1.0 - v_tex[:, 1]
t_tex_idx = t_pos_idx.clone()
if (
hasattr(mesh.visual.material, "baseColorTexture")
and mesh.visual.material.baseColorTexture
):
texture = torch.tensor(
np.array(mesh.visual.material.baseColorTexture) / 255.0,
dtype=torch.float32,
)[..., :3]
else:
texture = torch.zeros(
(default_uv_size, default_uv_size, 3), dtype=torch.float32
)
else:
v_tex = None
t_tex_idx = None
texture = None
textured_mesh = TexturedMesh(
v_pos=v_pos,
t_pos_idx=t_pos_idx,
v_tex=v_tex,
t_tex_idx=t_tex_idx,
texture=texture,
)
if merge_vertices:
mesh.merge_vertices(merge_tex=True)
textured_mesh.set_stitched_mesh(
torch.tensor(mesh.vertices, dtype=torch.float32),
torch.tensor(mesh.faces, dtype=torch.int64),
)
textured_mesh.to(device)
if return_transform:
return textured_mesh, np.array(centroid), max_scale / scale
return textured_mesh
@dataclass
class RenderOutput:
attr: Optional[torch.FloatTensor] = None
mask: Optional[torch.BoolTensor] = None
depth: Optional[torch.FloatTensor] = None
normal: Optional[torch.FloatTensor] = None
pos: Optional[torch.FloatTensor] = None
class NVDiffRastContextWrapper:
def __init__(self, device: str, context_type: str = "gl"):
if context_type == "gl":
self.ctx = dr.RasterizeGLContext(device=device)
elif context_type == "cuda":
self.ctx = dr.RasterizeCudaContext(device=device)
else:
raise NotImplementedError
def rasterize(self, pos, tri, resolution, ranges=None, grad_db=True):
"""
Rasterize triangles.
All input tensors must be contiguous and reside in GPU memory except for the ranges tensor that, if specified, has to reside in CPU memory. The output tensors will be contiguous and reside in GPU memory.
Arguments:
glctx Rasterizer context of type RasterizeGLContext or RasterizeCudaContext.
pos Vertex position tensor with dtype torch.float32. To enable range mode, this tensor should have a 2D shape [num_vertices, 4]. To enable instanced mode, use a 3D shape [minibatch_size, num_vertices, 4].
tri Triangle tensor with shape [num_triangles, 3] and dtype torch.int32.
resolution Output resolution as integer tuple (height, width).
ranges In range mode, tensor with shape [minibatch_size, 2] and dtype torch.int32, specifying start indices and counts into tri. Ignored in instanced mode.
grad_db Propagate gradients of image-space derivatives of barycentrics into pos in backward pass. Ignored if using an OpenGL context that was not configured to output image-space derivatives.
Returns:
A tuple of two tensors. The first output tensor has shape [minibatch_size, height, width, 4] and contains the main rasterizer output in order (u, v, z/w, triangle_id). If the OpenGL context was configured to output image-space derivatives of barycentrics, the second output tensor will also have shape [minibatch_size, height, width, 4] and contain said derivatives in order (du/dX, du/dY, dv/dX, dv/dY). Otherwise it will be an empty tensor with shape [minibatch_size, height, width, 0].
"""
return dr.rasterize(
self.ctx, pos.float(), tri.int(), resolution, ranges, grad_db
)
def interpolate(self, attr, rast, tri, rast_db=None, diff_attrs=None):
"""
Interpolate vertex attributes.
All input tensors must be contiguous and reside in GPU memory. The output tensors will be contiguous and reside in GPU memory.
Arguments:
attr Attribute tensor with dtype torch.float32. Shape is [num_vertices, num_attributes] in range mode, or [minibatch_size, num_vertices, num_attributes] in instanced mode. Broadcasting is supported along the minibatch axis.
rast Main output tensor from rasterize().
tri Triangle tensor with shape [num_triangles, 3] and dtype torch.int32.
rast_db (Optional) Tensor containing image-space derivatives of barycentrics, i.e., the second output tensor from rasterize(). Enables computing image-space derivatives of attributes.
diff_attrs (Optional) List of attribute indices for which image-space derivatives are to be computed. Special value 'all' is equivalent to list [0, 1, ..., num_attributes - 1].
Returns:
A tuple of two tensors. The first output tensor contains interpolated attributes and has shape [minibatch_size, height, width, num_attributes]. If rast_db and diff_attrs were specified, the second output tensor contains the image-space derivatives of the selected attributes and has shape [minibatch_size, height, width, 2 * len(diff_attrs)]. The derivatives of the first selected attribute A will be on channels 0 and 1 as (dA/dX, dA/dY), etc. Otherwise, the second output tensor will be an empty tensor with shape [minibatch_size, height, width, 0].
"""
return dr.interpolate(attr.float(), rast, tri.int(), rast_db, diff_attrs)
def texture(
self,
tex,
uv,
uv_da=None,
mip_level_bias=None,
mip=None,
filter_mode="auto",
boundary_mode="wrap",
max_mip_level=None,
):
"""
Perform texture sampling.
All input tensors must be contiguous and reside in GPU memory. The output tensor will be contiguous and reside in GPU memory.
Arguments:
tex Texture tensor with dtype torch.float32. For 2D textures, must have shape [minibatch_size, tex_height, tex_width, tex_channels]. For cube map textures, must have shape [minibatch_size, 6, tex_height, tex_width, tex_channels] where tex_width and tex_height are equal. Note that boundary_mode must also be set to 'cube' to enable cube map mode. Broadcasting is supported along the minibatch axis.
uv Tensor containing per-pixel texture coordinates. When sampling a 2D texture, must have shape [minibatch_size, height, width, 2]. When sampling a cube map texture, must have shape [minibatch_size, height, width, 3].
uv_da (Optional) Tensor containing image-space derivatives of texture coordinates. Must have same shape as uv except for the last dimension that is to be twice as long.
mip_level_bias (Optional) Per-pixel bias for mip level selection. If uv_da is omitted, determines mip level directly. Must have shape [minibatch_size, height, width].
mip (Optional) Preconstructed mipmap stack from a texture_construct_mip() call, or a list of tensors specifying a custom mipmap stack. When specifying a custom mipmap stack, the tensors in the list must follow the same format as tex except for width and height that must follow the usual rules for mipmap sizes. The base level texture is still supplied in tex and must not be included in the list. Gradients of a custom mipmap stack are not automatically propagated to base texture but the mipmap tensors will receive gradients of their own. If a mipmap stack is not specified but the chosen filter mode requires it, the mipmap stack is constructed internally and discarded afterwards.
filter_mode Texture filtering mode to be used. Valid values are 'auto', 'nearest', 'linear', 'linear-mipmap-nearest', and 'linear-mipmap-linear'. Mode 'auto' selects 'linear' if neither uv_da or mip_level_bias is specified, and 'linear-mipmap-linear' when at least one of them is specified, these being the highest-quality modes possible depending on the availability of the image-space derivatives of the texture coordinates or direct mip level information.
boundary_mode Valid values are 'wrap', 'clamp', 'zero', and 'cube'. If tex defines a cube map, this must be set to 'cube'. The default mode 'wrap' takes fractional part of texture coordinates. Mode 'clamp' clamps texture coordinates to the centers of the boundary texels. Mode 'zero' virtually extends the texture with all-zero values in all directions.
max_mip_level If specified, limits the number of mipmaps constructed and used in mipmap-based filter modes.
Returns:
A tensor containing the results of the texture sampling with shape [minibatch_size, height, width, tex_channels]. Cube map fetches with invalid uv coordinates (e.g., zero vectors) output all zeros and do not propagate gradients.
"""
return dr.texture(
tex.float(),
uv.float(),
uv_da,
mip_level_bias,
mip,
filter_mode,
boundary_mode,
max_mip_level,
)
def antialias(
self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0
):
"""
Perform antialiasing.
All input tensors must be contiguous and reside in GPU memory. The output tensor will be contiguous and reside in GPU memory.
Note that silhouette edge determination is based on vertex indices in the triangle tensor. For it to work properly, a vertex belonging to multiple triangles must be referred to using the same vertex index in each triangle. Otherwise, nvdiffrast will always classify the adjacent edges as silhouette edges, which leads to bad performance and potentially incorrect gradients. If you are unsure whether your data is good, check which pixels are modified by the antialias operation and compare to the example in the documentation.
Arguments:
color Input image to antialias with shape [minibatch_size, height, width, num_channels].
rast Main output tensor from rasterize().
pos Vertex position tensor used in the rasterization operation.
tri Triangle tensor used in the rasterization operation.
topology_hash (Optional) Preconstructed topology hash for the triangle tensor. If not specified, the topology hash is constructed internally and discarded afterwards.
pos_gradient_boost (Optional) Multiplier for gradients propagated to pos.
Returns:
A tensor containing the antialiased image with the same shape as color input tensor.
"""
return dr.antialias(
color.float(),
rast,
pos.float(),
tri.int(),
topology_hash,
pos_gradient_boost,
)
def get_clip_space_position(pos: torch.FloatTensor, mvp_mtx: torch.FloatTensor):
pos_homo = torch.cat([pos, torch.ones([pos.shape[0], 1]).to(pos)], dim=-1)
return torch.matmul(pos_homo, mvp_mtx.permute(0, 2, 1))
def transform_points_homo(pos: torch.FloatTensor, mtx: torch.FloatTensor):
batch_size = pos.shape[0]
pos_shape = pos.shape[1:-1]
pos = pos.reshape(batch_size, -1, 3)
pos_homo = torch.cat([pos, torch.ones_like(pos[..., 0:1])], dim=-1)
pos = (pos_homo.unsqueeze(2) * mtx.unsqueeze(1)).sum(-1)[..., :3]
pos = pos.reshape(batch_size, *pos_shape, 3)
return pos
class DepthNormalizationStrategy(ABC):
@abstractmethod
def __init__(self, *args, **kwargs):
pass
@abstractmethod
def __call__(
self, depth: torch.FloatTensor, mask: torch.BoolTensor
) -> torch.FloatTensor:
pass
class DepthControlNetNormalization(DepthNormalizationStrategy):
def __init__(
self, far_clip: float = 0.25, near_clip: float = 1.0, bg_value: float = 0.0
):
self.far_clip = far_clip
self.near_clip = near_clip
self.bg_value = bg_value
def __call__(
self, depth: torch.FloatTensor, mask: torch.BoolTensor
) -> torch.FloatTensor:
batch_size = depth.shape[0]
min_depth = depth.view(batch_size, -1).min(dim=-1)[0][:, None, None]
max_depth = depth.view(batch_size, -1).max(dim=-1)[0][:, None, None]
depth = 1.0 - ((depth - min_depth) / (max_depth - min_depth + 1e-5)).clamp(
0.0, 1.0
)
depth = depth * (self.near_clip - self.far_clip) + self.far_clip
depth[~mask] = self.bg_value
return depth
class Zero123PlusPlusNormalization(DepthNormalizationStrategy):
def __init__(self, bg_value: float = 0.8):
self.bg_value = bg_value
def __call__(self, depth: FloatTensor, mask: BoolTensor) -> FloatTensor:
batch_size = depth.shape[0]
min_depth = depth.view(batch_size, -1).min(dim=-1)[0][:, None, None]
max_depth = depth.view(batch_size, -1).max(dim=-1)[0][:, None, None]
depth = ((depth - min_depth) / (max_depth - min_depth + 1e-5)).clamp(0.0, 1.0)
depth[~mask] = self.bg_value
return depth
class SimpleNormalization(DepthNormalizationStrategy):
def __init__(
self,
scale: float = 1.0,
offset: float = -1.0,
clamp: bool = True,
bg_value: float = 1.0,
):
self.scale = scale
self.offset = offset
self.clamp = clamp
self.bg_value = bg_value
def __call__(self, depth: FloatTensor, mask: BoolTensor) -> FloatTensor:
depth = depth * self.scale + self.offset
if self.clamp:
depth = depth.clamp(0.0, 1.0)
depth[~mask] = self.bg_value
return depth
def render(
ctx: NVDiffRastContextWrapper,
mesh: TexturedMesh,
cam: Camera,
height: int,
width: int,
render_attr: bool = True,
render_depth: bool = True,
render_normal: bool = True,
depth_normalization_strategy: DepthNormalizationStrategy = DepthControlNetNormalization(),
attr_background: Union[float, torch.FloatTensor] = 0.5,
antialias_attr=False,
normal_background: Union[float, torch.FloatTensor] = 0.5,
texture_override=None,
texture_filter_mode: str = "linear",
) -> RenderOutput:
output_dict = {}
v_pos_clip = get_clip_space_position(mesh.v_pos, cam.mvp_mtx)
rast, _ = ctx.rasterize(v_pos_clip, mesh.t_pos_idx, (height, width), grad_db=True)
mask = rast[..., 3] > 0
gb_pos, _ = ctx.interpolate(mesh.v_pos[None], rast, mesh.t_pos_idx)
output_dict.update({"mask": mask, "pos": gb_pos})
if render_depth:
gb_pos_vs = transform_points_homo(gb_pos, cam.w2c)
gb_depth = -gb_pos_vs[..., 2]
# set background pixels to min depth value for correct min/max calculation
gb_depth = torch.where(
mask,
gb_depth,
gb_depth.view(gb_depth.shape[0], -1).min(dim=-1)[0][:, None, None],
)
gb_depth = depth_normalization_strategy(gb_depth, mask)
output_dict["depth"] = gb_depth
if render_attr:
tex_c, _ = ctx.interpolate(mesh.v_tex[None], rast, mesh.t_tex_idx)
texture = (
texture_override[None]
if texture_override is not None
else mesh.texture[None]
)
gb_rgb_fg = ctx.texture(texture, tex_c, filter_mode=texture_filter_mode)
gb_rgb_bg = torch.ones_like(gb_rgb_fg) * attr_background
gb_rgb = torch.where(mask[..., None], gb_rgb_fg, gb_rgb_bg)
if antialias_attr:
gb_rgb = ctx.antialias(gb_rgb, rast, v_pos_clip, mesh.t_pos_idx)
output_dict["attr"] = gb_rgb
if render_normal:
gb_nrm, _ = ctx.interpolate(mesh.v_nrm[None], rast, mesh.stitched_t_pos_idx)
gb_nrm = F.normalize(gb_nrm, dim=-1, p=2)
gb_nrm[~mask] = normal_background
output_dict["normal"] = gb_nrm
return RenderOutput(**output_dict)
|