File size: 9,020 Bytes
ff0340e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951bb28
ff0340e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import numpy as np
import torch
import nvdiffrast.torch as dr
import json
import torch.nn.functional as F
from PIL import Image
import pymeshlab
import cv2

def back_to_texture(glctx, look_at, pos, tri, tex, uv, uv_idx, idx, vn):
    rast_out, rast_out_db = dr.rasterize(glctx, pos, tri, resolution=[tex.shape[0],tex.shape[1]])
    gb_normal, _ = dr.interpolate(vn[None], rast_out, tri)
    gb_normal = F.normalize(gb_normal, dim=-1)
    if idx == 2 or idx == 0:
        filter_camera = [torch.tensor([[[[1,0.,0.]]]]).cuda(), torch.tensor([[[[-1,0.,0.]]]]).cuda()]
    else:
        filter_camera = [torch.tensor([[[[0,-1.,0.]]]]).cuda(), torch.tensor([[[[0,1.,0.]]]]).cuda()]
    nmasks = []
    for fc in filter_camera:
        nmasks.append(((gb_normal * fc) > 0.75).int().sum(keepdim=True, dim=-1))
    gb_normal_mask = 1 - (nmasks[0] | nmasks[1])
   #Image.fromarray(np.clip(gb_normal_mask[0,...,0].detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).save(f"mask_normal_{idx}.png")
    gb_mask = rast_out[...,3:4] > 0
    tri_list = torch.unique(rast_out[...,3:4].reshape(-1))
    tri_list = (tri_list[1:] - 1).to(torch.int32)
    pos = pos[0]

    depth_map = rast_out[...,3:4].clone()
    depth_map[depth_map > 0] = 1
    depth_map = depth_map.to(torch.float32)
    dmax = (rast_out[...,2:3] * gb_mask).max()
    uv = torch.cat([uv * 2 - 1, torch.zeros(uv.shape[0], 1).cuda(), torch.ones(uv.shape[0], 1).cuda()], dim=1).unsqueeze(0)
    uv_idx = uv_idx[tri_list.to(torch.long)]
    rast_uv, rast_uv_db = dr.rasterize(glctx, uv, uv_idx, resolution=(1024, 1024))
    pos_clip = torch.cat([pos[...,:2], pos[...,3:]], -1)
    pos_2d, _ = dr.interpolate(pos_clip, rast_uv, tri[tri_list.to(torch.long)]) # pos (x, y, z, w)
    pos_coord = (pos_2d[...,:2] / (pos_2d[...,2:3] + 1e-6) + 1) / 2.
    texture_mask = (rast_uv[...,3:4] > 0).int()
    color = dr.texture(tex[None, ...] * gb_normal_mask, pos_coord, filter_mode='linear')
    color_mask = dr.texture(gb_normal_mask.to(torch.float32), pos_coord, filter_mode='linear')
    color_mask[color_mask > 0.82] = 1
    color_mask[color_mask <= 0.82] = 0
    color_mask = color_mask.to(torch.int32)
   #Image.fromarray(np.clip(color_mask[0].repeat(1,1,3).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).save(f"depth_{idx}.png")
    texture_mask = texture_mask * color_mask
   #Image.fromarray(np.clip(color[0].detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).save(f"{idx}.png")
   #Image.fromarray(np.clip(texture_mask[0].repeat(1,1,3).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).convert("RGB").save(f"mask-{idx}.png")
    return color, texture_mask, rast_uv

def perspective(fovy=0.6913, aspect=1.0, n=0.1, f=1000.0, device=None):
    y = np.tan(fovy / 2)
    return torch.tensor([[1/(y*aspect),    0,            0,              0], 
                         [           0, 1/-y,            0,              0], 
                         [           0,    0, -(f+n)/(f-n), -(2*f*n)/(f-n)], 
                         [           0,    0,           -1,              0]]).to(torch.float32).cuda()

def rec_mvp(trans, h, w):
    mv = trans
    fov = 40. / 180. * np.pi
    proj = perspective(fov, h / w, n=0.1, f=1000)
    mvp = proj @ mv
    return mvp

def aggregate_texture(kd_map, textures, texture_masks, rast_uvs):
    texture = torch.zeros_like(textures[0])
    texture_mask = torch.zeros_like(texture_masks[0])
    ctex = []
    for idx in range(len(textures)):
        ctex.append(textures[idx] * texture_masks[idx] + 10 * (1 - texture_masks[idx]))
    cat_textures = torch.stack(ctex, dim=-2)
    dis_measure = (cat_textures - kd_map.unsqueeze(-2)).abs().sum(-1)
    _, choose_idx = dis_measure.min(-1)

    choose_idx = choose_idx.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, 1, 3)
    final_texture_map = torch.gather(cat_textures, 3, choose_idx).squeeze(-2)
    #cv2.imwrite("final_texture_map.png", cv2.cvtColor((final_texture_map[0].cpu().numpy() * 255).astype(np.uint8), cv2.COLOR_BGR2RGB))
    #cv2.imwrite("final_texture_mask.png", (texture_mask[0].cpu().numpy() * 255).astype(np.uint8))
    zero_mask = (final_texture_map.max(dim=-1, keepdim=True)[0] > 0.1)
    close_mask = ((final_texture_map[0] - kd_map).abs().sum(dim=-1, keepdim=True) < 1.0).int()
    for idx in range(len(textures)):
        texture += textures[idx] * texture_masks[idx]
        texture_mask |= texture_masks[idx]
    texture_mask = texture_mask * zero_mask * close_mask[None]
    optimize_mask = (texture_mask == 0).int()

   #import pdb; pdb.set_trace()
   #mask = (texture_mask[0].cpu().numpy() * 255).astype(np.uint8)
   #cv2.imwrite("mask.png", mask)
   #kernel = np.ones((5,5), np.uint8)
   #dilated = cv2.dilate(mask, kernel, iterations=1)
   #cv2.imwrite("di_mask.png", dilated)
   #texture_mask[0] = torch.from_numpy(dilated).unsqueeze(-1).to(torch.float32) / 255.

    final_texture_map = final_texture_map[0] * texture_mask[0]
    Image.fromarray(np.rint(final_texture_map.cpu().numpy() * 255).astype(np.uint8)).save(f"final_texture.png")

   #cv2.imwrite("kd_map.png", cv2.cvtColor((kd_map.cpu().numpy() * 255).astype(np.uint8), cv2.COLOR_BGR2RGB))
   #cv2.imwrite("texture_map.png", cv2.cvtColor((final_texture_map.cpu().numpy() * 255).astype(np.uint8), cv2.COLOR_BGR2RGB))
   #result = cv2.seamlessClone((final_texture_map.cpu().numpy() * 255).astype(np.uint8), (kd_map.cpu().numpy() * 255).astype(np.uint8), mask, (mask.shape[1]//2, mask.shape[0]//2), cv2.NORMAL_CLONE)
   #cv2.imwrite("result.png", cv2.cvtColor(result * 255, cv2.COLOR_BGR2RGB))

    kd_map = kd_map * (1 - texture_mask[0]) + final_texture_map
    return kd_map, optimize_mask

def refine(save_path, front_image, back_image, left_image, right_image):
    ms = pymeshlab.MeshSet()
    mesh_path = f"{save_path}/model-00.obj"
    ms.load_new_mesh(mesh_path)
    ms.meshing_merge_close_vertices()
    ms.apply_coord_laplacian_smoothing(stepsmoothnum=10)
    tl = open(mesh_path, "r").readlines()
    tex_uv = []
    uv_idx = []
    for line in tl:
        if line.startswith("vt"):
            uvs = line.split(" ")[1:3]
            tex_uv += [float(uvs[0]), 1.0-float(uvs[1])]
    tex_uv = torch.from_numpy(np.array(tex_uv)).to(torch.float32).cuda().reshape(-1, 2)
    m = ms.current_mesh()
    v_matrix = m.vertex_matrix()
    f_matrix = m.face_matrix()
    vn = m.vertex_normal_matrix()
    uv_idx = torch.arange(f_matrix.shape[0] * 3).reshape(-1, 3).to(torch.int32).cuda()
    vn = torch.tensor(vn).contiguous().cuda().to(torch.float32)

    frames = []
    front_camera = torch.tensor([[
        1,0,0,0,
        0,0,1,0,
        0,-1,0,-1.5,
        0,0,0,1,
    ]]).to(torch.float32).reshape(4,4).cuda()
    back_camera = torch.tensor([[
        1,0,0,0,
        0,0,1,0,
        0,1,0,-1.5,
        0,0,0,1,
    ]]).to(torch.float32).reshape(4,4).cuda()
    right_camera = torch.tensor([[
        0,-1,0,0,
        0,0,1,0,
        1,0,0,-1.5,
        0,0,0,1,
    ]]).to(torch.float32).reshape(4,4).cuda()
    left_camera = torch.tensor([[
        0,1,0,0,
        0,0,1,0,
        -1,0,0,-1.5,
        0,0,0,1,
    ]]).to(torch.float32).reshape(4,4).cuda()
    frames = [front_camera, left_camera, back_camera, right_camera]

    target_images = []
    for target_image in [front_image, left_image, back_image, right_image]:
        target_images.append(torch.from_numpy(np.asarray(target_image.convert("RGB"))).to(torch.float32).cuda() / 255.)

    pos = torch.tensor(v_matrix, dtype=torch.float32).contiguous().cuda()
    tri = torch.tensor(f_matrix, dtype=torch.int32).contiguous().cuda()

    kd_map = (torch.tensor(np.asarray(Image.open(f"{save_path}/texture_kd.jpg"))) / 255.).cuda()
    translate_tensor = torch.zeros((1,1,3)).cuda()
    pos = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()],-1).unsqueeze(0)
    glctx = dr.RasterizeCudaContext()
    target_texture = []
    target_mask = []
    rast_uvs = []
    with torch.no_grad():
        for idx, trans in enumerate(frames):
            target_image = target_images[idx]
            look_at = -torch.linalg.inv(trans)[:3,2]
            mvp = rec_mvp(trans, h=target_images[0].shape[0], w=target_images[0].shape[1])
            trans_pos = pos.clone()
            trans_pos[...,:3] += translate_tensor
            view_pos = torch.matmul(mvp, trans_pos.unsqueeze(-1)).squeeze(-1) 
            texture, mask, rast_uv = back_to_texture(glctx, look_at, view_pos, tri, target_image, tex_uv, uv_idx, idx, vn)
            target_texture.append(texture)
            target_mask.append(mask)
            rast_uvs.append(rast_uv)
        kd_map, opt_mask = aggregate_texture(kd_map, target_texture, target_mask, rast_uvs)
        opt_mask = opt_mask[0]
    Image.fromarray((np.clip(kd_map.detach().cpu().numpy() * 255, 0, 255)).astype(np.uint8)).save(f"{save_path}/refined_texture_kd.jpg")

   #ms.save_current_mesh(f"{save_path}/model-00.obj")
    with open(f"{save_path}/model-00.mtl", "w") as f:
        f.write(f"newmtl default\nKa 0.0 0.0 0.0\nmap_Kd refined_texture_kd.jpg\nKs 0.0 0.0 0.0")