|
|
|
from fastapi import FastAPI, HTTPException, UploadFile, File |
|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
from typing import Optional |
|
import uvicorn |
|
import huggingface_hub |
|
import os |
|
from PIL import Image |
|
import io |
|
import base64 |
|
|
|
app = FastAPI( |
|
title="OmniVLM API", |
|
description="API for text and image processing using OmniVLM model", |
|
version="1.0.0" |
|
) |
|
|
|
|
|
model_path = huggingface_hub.hf_hub_download( |
|
repo_id="NexaAIDev/OmniVLM-968M", |
|
filename="omnivision-text-optimized-llm-Q8_0.gguf" |
|
) |
|
|
|
|
|
llm = Llama( |
|
model_path=model_path, |
|
n_ctx=2048, |
|
n_threads=4, |
|
n_batch=512, |
|
verbose=True |
|
) |
|
|
|
class GenerationRequest(BaseModel): |
|
prompt: str |
|
max_tokens: Optional[int] = 100 |
|
temperature: Optional[float] = 0.7 |
|
top_p: Optional[float] = 0.9 |
|
|
|
class ImageRequest(BaseModel): |
|
prompt: Optional[str] = "Describe this image in detail" |
|
max_tokens: Optional[int] = 200 |
|
temperature: Optional[float] = 0.7 |
|
|
|
class GenerationResponse(BaseModel): |
|
generated_text: str |
|
|
|
@app.post("/generate", response_model=GenerationResponse) |
|
async def generate_text(request: GenerationRequest): |
|
try: |
|
output = llm( |
|
request.prompt, |
|
max_tokens=request.max_tokens, |
|
temperature=request.temperature, |
|
top_p=request.top_p |
|
) |
|
|
|
return GenerationResponse(generated_text=output["choices"][0]["text"]) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/process-image", response_model=GenerationResponse) |
|
async def process_image( |
|
file: UploadFile = File(...), |
|
request: ImageRequest = None |
|
): |
|
try: |
|
|
|
image_data = await file.read() |
|
image = Image.open(io.BytesIO(image_data)) |
|
|
|
|
|
buffered = io.BytesIO() |
|
image.save(buffered, format=image.format or "JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
|
|
|
|
prompt = f""" |
|
<image>data:image/jpeg;base64,{img_str}</image> |
|
{request.prompt if request else "Describe this image in detail"} |
|
""" |
|
|
|
|
|
output = llm( |
|
prompt, |
|
max_tokens=request.max_tokens if request else 200, |
|
temperature=request.temperature if request else 0.7 |
|
) |
|
|
|
return GenerationResponse(generated_text=output["choices"][0]["text"]) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
return {"status": "healthy"} |
|
|
|
if __name__ == "__main__": |
|
port = int(os.environ.get("PORT", 7860)) |
|
uvicorn.run(app, host="0.0.0.0", port=port) |