omniVLM / app.py
sksstudio
sa
5401975
raw
history blame
2.89 kB
# app.py
from fastapi import FastAPI, HTTPException, UploadFile, File
from pydantic import BaseModel
from llama_cpp import Llama
from typing import Optional
import uvicorn
import huggingface_hub
import os
from PIL import Image
import io
import base64
app = FastAPI(
title="OmniVLM API",
description="API for text and image processing using OmniVLM model",
version="1.0.0"
)
# Download the model from Hugging Face Hub
model_path = huggingface_hub.hf_hub_download(
repo_id="NexaAIDev/OmniVLM-968M",
filename="omnivision-text-optimized-llm-Q8_0.gguf"
)
# Initialize the model with the downloaded file
llm = Llama(
model_path=model_path,
n_ctx=2048,
n_threads=4,
n_batch=512,
verbose=True
)
class GenerationRequest(BaseModel):
prompt: str
max_tokens: Optional[int] = 100
temperature: Optional[float] = 0.7
top_p: Optional[float] = 0.9
class ImageRequest(BaseModel):
prompt: Optional[str] = "Describe this image in detail"
max_tokens: Optional[int] = 200
temperature: Optional[float] = 0.7
class GenerationResponse(BaseModel):
generated_text: str
@app.post("/generate", response_model=GenerationResponse)
async def generate_text(request: GenerationRequest):
try:
output = llm(
request.prompt,
max_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p
)
return GenerationResponse(generated_text=output["choices"][0]["text"])
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/process-image", response_model=GenerationResponse)
async def process_image(
file: UploadFile = File(...),
request: ImageRequest = None
):
try:
# Read and validate the image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data))
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format=image.format or "JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Create prompt with image
prompt = f"""
<image>data:image/jpeg;base64,{img_str}</image>
{request.prompt if request else "Describe this image in detail"}
"""
# Generate description
output = llm(
prompt,
max_tokens=request.max_tokens if request else 200,
temperature=request.temperature if request else 0.7
)
return GenerationResponse(generated_text=output["choices"][0]["text"])
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
return {"status": "healthy"}
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)