import numpy as np import plotly.graph_objects as go import torch from tqdm.auto import tqdm from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config from point_e.diffusion.sampler import PointCloudSampler from point_e.models.download import load_checkpoint from point_e.models.configs import MODEL_CONFIGS, model_from_config from point_e.util.plotting import plot_point_cloud import gradio as gr # Select device (CUDA if available, otherwise CPU) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Initialize base model print('Creating base model...') base_name = 'base40M-textvec' base_model = model_from_config(MODEL_CONFIGS[base_name], device) base_model.eval() base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) # Initialize upsample model print('Creating upsample model...') upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) upsampler_model.eval() upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) # Load checkpoints print('Downloading base checkpoint...') base_model.load_state_dict(load_checkpoint(base_name, device)) print('Downloading upsampler checkpoint...') upsampler_model.load_state_dict(load_checkpoint('upsample', device)) # Initialize sampler sampler = PointCloudSampler( device=device, models=[base_model, upsampler_model], diffusions=[base_diffusion, upsampler_diffusion], num_points=[1024, 4096 - 1024], aux_channels=['R', 'G', 'B'], guidance_scale=[3.0, 0.0], model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all ) # Function to create point clouds def create_point_cloud(inp): samples = None for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inp]))): samples = x pc = sampler.output_to_point_clouds(samples)[0] # Get the point cloud # Check if auxiliary channels (e.g., RGB) are available if 'R' in pc.channels and 'G' in pc.channels and 'B' in pc.channels: # Combine R, G, B channels into a single color value colors = ( pc.channels['R'] / 255.0, # Normalize to [0, 1] pc.channels['G'] / 255.0, pc.channels['B'] / 255.0 ) else: # Fall back to a single color if no RGB data is available colors = 'blue' # Choose a default color # Create a Plotly 3D scatter plot fig = go.Figure( data=[ go.Scatter3d( x=pc.coords[:, 0], # X coordinates y=pc.coords[:, 1], # Y coordinates z=pc.coords[:, 2], # Z coordinates mode='markers', marker=dict( size=2, color=colors, colorscale='Viridis' if isinstance(colors, tuple) else None, # Use Viridis if RGB opacity=0.8 ) ) ] ) fig.update_layout( scene=dict( xaxis_title="X", yaxis_title="Y", zaxis_title="Z", ), margin=dict(r=0, l=0, b=0, t=0) ) return fig # Create Gradio interface demo = gr.Interface( fn=create_point_cloud, inputs="text", outputs=gr.Plot(), # Gradio expects HTML for Plotly visualizations title="Point-E Demo - Convert Text to 3D Point Clouds", description="Generate and visualize 3D point clouds from textual descriptions using OpenAI's Point-E framework." ) # Enable queuing and launch Gradio app demo.queue(max_size=30) demo.launch(debug=True)