import numpy as np import plotly.graph_objects as go import torch from tqdm.auto import tqdm from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config from point_e.diffusion.sampler import PointCloudSampler from point_e.models.download import load_checkpoint from point_e.models.configs import MODEL_CONFIGS, model_from_config from point_e.util.plotting import plot_point_cloud import gradio as gr # Select device (CUDA if available, otherwise CPU) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Initialize base model print('Creating base model...') base_name = 'base40M-textvec' base_model = model_from_config(MODEL_CONFIGS[base_name], device) base_model.eval() base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) # Initialize upsample model print('Creating upsample model...') upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) upsampler_model.eval() upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) # Load checkpoints print('Downloading base checkpoint...') base_model.load_state_dict(load_checkpoint(base_name, device)) print('Downloading upsampler checkpoint...') upsampler_model.load_state_dict(load_checkpoint('upsample', device)) # Initialize sampler sampler = PointCloudSampler( device=device, models=[base_model, upsampler_model], diffusions=[base_diffusion, upsampler_diffusion], num_points=[1024, 4096 - 1024], aux_channels=['R', 'G', 'B'], guidance_scale=[3.0, 0.0], model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all ) # Function to create point clouds def create_point_cloud(inp): # Generate progressive samples samples = None for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inp]))): samples = x # Extract the point cloud pc = sampler.output_to_point_clouds(samples)[0] # Generate a Plotly figure for visualization fig = plot_point_cloud(pc, grid_size=3, fixed_bounds=((-0.75, -0.75, -0.75), (0.75, 0.75, 0.75))) # Convert Plotly figure to HTML for Gradio compatibility return fig.to_html(full_html=False) # Create Gradio interface demo = gr.Interface( fn=create_point_cloud, inputs="text", outputs=gr.HTML(), # Gradio expects HTML for Plotly visualizations title="Point-E Demo - Convert Text to 3D Point Clouds", description="Generate and visualize 3D point clouds from textual descriptions using OpenAI's Point-E framework." ) # Enable queuing and launch Gradio app demo.queue(max_size=30) demo.launch(debug=True)