Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
import numpy
|
| 2 |
-
import gradio as gr
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
|
| 5 |
import torch
|
|
@@ -11,25 +9,32 @@ from point_e.models.download import load_checkpoint
|
|
| 11 |
from point_e.models.configs import MODEL_CONFIGS, model_from_config
|
| 12 |
from point_e.util.plotting import plot_point_cloud
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
base_name = 'base40M-textvec'
|
| 18 |
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
|
| 19 |
base_model.eval()
|
| 20 |
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
|
| 21 |
|
| 22 |
-
|
|
|
|
| 23 |
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
| 24 |
upsampler_model.eval()
|
| 25 |
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
| 26 |
|
| 27 |
-
|
|
|
|
| 28 |
base_model.load_state_dict(load_checkpoint(base_name, device))
|
| 29 |
|
| 30 |
-
print('
|
| 31 |
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
| 32 |
|
|
|
|
| 33 |
sampler = PointCloudSampler(
|
| 34 |
device=device,
|
| 35 |
models=[base_model, upsampler_model],
|
|
@@ -37,50 +42,34 @@ sampler = PointCloudSampler(
|
|
| 37 |
num_points=[1024, 4096 - 1024],
|
| 38 |
aux_channels=['R', 'G', 'B'],
|
| 39 |
guidance_scale=[3.0, 0.0],
|
| 40 |
-
model_kwargs_key_filter=('texts', ''),
|
| 41 |
)
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
samples = None
|
| 45 |
-
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[
|
| 46 |
samples = x
|
|
|
|
|
|
|
| 47 |
pc = sampler.output_to_point_clouds(samples)[0]
|
| 48 |
-
pc = sampler.output_to_point_clouds(samples)[0]
|
| 49 |
-
colors=(238, 75, 43)
|
| 50 |
-
fig = go.Figure(
|
| 51 |
-
data=[
|
| 52 |
-
go.Scatter3d(
|
| 53 |
-
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
|
| 54 |
-
mode='markers',
|
| 55 |
-
marker=dict(
|
| 56 |
-
size=2,
|
| 57 |
-
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
|
| 58 |
-
)
|
| 59 |
-
)
|
| 60 |
-
],
|
| 61 |
-
layout=dict(
|
| 62 |
-
scene=dict(
|
| 63 |
-
xaxis=dict(visible=False),
|
| 64 |
-
yaxis=dict(visible=False),
|
| 65 |
-
zaxis=dict(visible=False)
|
| 66 |
-
)
|
| 67 |
-
),
|
| 68 |
-
)
|
| 69 |
-
return fig
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
demo = gr.Interface(
|
| 72 |
-
fn=
|
| 73 |
inputs="text",
|
| 74 |
-
outputs=gr.
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
["a RED pumpkin"],
|
| 78 |
-
["a yellow rubber duck"]
|
| 79 |
-
],
|
| 80 |
-
title="Point-E demo: text to 3D",
|
| 81 |
-
description="""Generated 3D Point Clouds with [Point-E](https://github.com/openai/point-e/tree/main). This demo uses a small, worse quality text-to-3D model to produce 3D point clouds directly from text descriptions.
|
| 82 |
-
Check out the [notebook](https://github.com/openai/point-e/blob/main/point_e/examples/text2pointcloud.ipynb).
|
| 83 |
-
"""
|
| 84 |
)
|
|
|
|
|
|
|
| 85 |
demo.queue(max_size=30)
|
| 86 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
| 1 |
import plotly.graph_objects as go
|
| 2 |
|
| 3 |
import torch
|
|
|
|
| 9 |
from point_e.models.configs import MODEL_CONFIGS, model_from_config
|
| 10 |
from point_e.util.plotting import plot_point_cloud
|
| 11 |
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
# Select device (CUDA if available, otherwise CPU)
|
| 15 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 16 |
|
| 17 |
+
# Initialize base model
|
| 18 |
+
print('Creating base model...')
|
| 19 |
base_name = 'base40M-textvec'
|
| 20 |
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
|
| 21 |
base_model.eval()
|
| 22 |
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
|
| 23 |
|
| 24 |
+
# Initialize upsample model
|
| 25 |
+
print('Creating upsample model...')
|
| 26 |
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
| 27 |
upsampler_model.eval()
|
| 28 |
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
| 29 |
|
| 30 |
+
# Load checkpoints
|
| 31 |
+
print('Downloading base checkpoint...')
|
| 32 |
base_model.load_state_dict(load_checkpoint(base_name, device))
|
| 33 |
|
| 34 |
+
print('Downloading upsampler checkpoint...')
|
| 35 |
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
| 36 |
|
| 37 |
+
# Initialize sampler
|
| 38 |
sampler = PointCloudSampler(
|
| 39 |
device=device,
|
| 40 |
models=[base_model, upsampler_model],
|
|
|
|
| 42 |
num_points=[1024, 4096 - 1024],
|
| 43 |
aux_channels=['R', 'G', 'B'],
|
| 44 |
guidance_scale=[3.0, 0.0],
|
| 45 |
+
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
|
| 46 |
)
|
| 47 |
|
| 48 |
+
# Function to create point clouds
|
| 49 |
+
def create_point_cloud(inp):
|
| 50 |
+
# Generate progressive samples
|
| 51 |
samples = None
|
| 52 |
+
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inp]))):
|
| 53 |
samples = x
|
| 54 |
+
|
| 55 |
+
# Extract the point cloud
|
| 56 |
pc = sampler.output_to_point_clouds(samples)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Generate a Plotly figure for visualization
|
| 59 |
+
fig = plot_point_cloud(pc, grid_size=3, fixed_bounds=((-0.75, -0.75, -0.75), (0.75, 0.75, 0.75)))
|
| 60 |
+
|
| 61 |
+
# Convert Plotly figure to HTML for Gradio compatibility
|
| 62 |
+
return fig.to_html(full_html=False)
|
| 63 |
+
|
| 64 |
+
# Create Gradio interface
|
| 65 |
demo = gr.Interface(
|
| 66 |
+
fn=create_point_cloud,
|
| 67 |
inputs="text",
|
| 68 |
+
outputs=gr.HTML(), # Gradio expects HTML for Plotly visualizations
|
| 69 |
+
title="Point-E Demo - Convert Text to 3D Point Clouds",
|
| 70 |
+
description="Generate and visualize 3D point clouds from textual descriptions using OpenAI's Point-E framework."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
)
|
| 72 |
+
|
| 73 |
+
# Enable queuing and launch Gradio app
|
| 74 |
demo.queue(max_size=30)
|
| 75 |
+
demo.launch(debug=True)
|