User-2468 commited on
Commit
e9d9b92
·
verified ·
1 Parent(s): 40618ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -43
app.py CHANGED
@@ -1,5 +1,3 @@
1
- import numpy
2
- import gradio as gr
3
  import plotly.graph_objects as go
4
 
5
  import torch
@@ -11,25 +9,32 @@ from point_e.models.download import load_checkpoint
11
  from point_e.models.configs import MODEL_CONFIGS, model_from_config
12
  from point_e.util.plotting import plot_point_cloud
13
 
 
 
 
14
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
15
 
16
- print('creating base model...')
 
17
  base_name = 'base40M-textvec'
18
  base_model = model_from_config(MODEL_CONFIGS[base_name], device)
19
  base_model.eval()
20
  base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
21
 
22
- print('creating upsample model...')
 
23
  upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
24
  upsampler_model.eval()
25
  upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
26
 
27
- print('downloading base checkpoint...')
 
28
  base_model.load_state_dict(load_checkpoint(base_name, device))
29
 
30
- print('downloading upsampler checkpoint...')
31
  upsampler_model.load_state_dict(load_checkpoint('upsample', device))
32
 
 
33
  sampler = PointCloudSampler(
34
  device=device,
35
  models=[base_model, upsampler_model],
@@ -37,50 +42,34 @@ sampler = PointCloudSampler(
37
  num_points=[1024, 4096 - 1024],
38
  aux_channels=['R', 'G', 'B'],
39
  guidance_scale=[3.0, 0.0],
40
- model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
41
  )
42
 
43
- def inference(prompt):
 
 
44
  samples = None
45
- for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])):
46
  samples = x
 
 
47
  pc = sampler.output_to_point_clouds(samples)[0]
48
- pc = sampler.output_to_point_clouds(samples)[0]
49
- colors=(238, 75, 43)
50
- fig = go.Figure(
51
- data=[
52
- go.Scatter3d(
53
- x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
54
- mode='markers',
55
- marker=dict(
56
- size=2,
57
- color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
58
- )
59
- )
60
- ],
61
- layout=dict(
62
- scene=dict(
63
- xaxis=dict(visible=False),
64
- yaxis=dict(visible=False),
65
- zaxis=dict(visible=False)
66
- )
67
- ),
68
- )
69
- return fig
70
 
 
 
 
 
 
 
 
71
  demo = gr.Interface(
72
- fn=inference,
73
  inputs="text",
74
- outputs=gr.Plot(),
75
- examples=[
76
- ["a red motorcycle"],
77
- ["a RED pumpkin"],
78
- ["a yellow rubber duck"]
79
- ],
80
- title="Point-E demo: text to 3D",
81
- description="""Generated 3D Point Clouds with [Point-E](https://github.com/openai/point-e/tree/main). This demo uses a small, worse quality text-to-3D model to produce 3D point clouds directly from text descriptions.
82
- Check out the [notebook](https://github.com/openai/point-e/blob/main/point_e/examples/text2pointcloud.ipynb).
83
- """
84
  )
 
 
85
  demo.queue(max_size=30)
86
- demo.launch(debug=True)
 
 
 
1
  import plotly.graph_objects as go
2
 
3
  import torch
 
9
  from point_e.models.configs import MODEL_CONFIGS, model_from_config
10
  from point_e.util.plotting import plot_point_cloud
11
 
12
+ import gradio as gr
13
+
14
+ # Select device (CUDA if available, otherwise CPU)
15
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
16
 
17
+ # Initialize base model
18
+ print('Creating base model...')
19
  base_name = 'base40M-textvec'
20
  base_model = model_from_config(MODEL_CONFIGS[base_name], device)
21
  base_model.eval()
22
  base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
23
 
24
+ # Initialize upsample model
25
+ print('Creating upsample model...')
26
  upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
27
  upsampler_model.eval()
28
  upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
29
 
30
+ # Load checkpoints
31
+ print('Downloading base checkpoint...')
32
  base_model.load_state_dict(load_checkpoint(base_name, device))
33
 
34
+ print('Downloading upsampler checkpoint...')
35
  upsampler_model.load_state_dict(load_checkpoint('upsample', device))
36
 
37
+ # Initialize sampler
38
  sampler = PointCloudSampler(
39
  device=device,
40
  models=[base_model, upsampler_model],
 
42
  num_points=[1024, 4096 - 1024],
43
  aux_channels=['R', 'G', 'B'],
44
  guidance_scale=[3.0, 0.0],
45
+ model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
46
  )
47
 
48
+ # Function to create point clouds
49
+ def create_point_cloud(inp):
50
+ # Generate progressive samples
51
  samples = None
52
+ for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inp]))):
53
  samples = x
54
+
55
+ # Extract the point cloud
56
  pc = sampler.output_to_point_clouds(samples)[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # Generate a Plotly figure for visualization
59
+ fig = plot_point_cloud(pc, grid_size=3, fixed_bounds=((-0.75, -0.75, -0.75), (0.75, 0.75, 0.75)))
60
+
61
+ # Convert Plotly figure to HTML for Gradio compatibility
62
+ return fig.to_html(full_html=False)
63
+
64
+ # Create Gradio interface
65
  demo = gr.Interface(
66
+ fn=create_point_cloud,
67
  inputs="text",
68
+ outputs=gr.HTML(), # Gradio expects HTML for Plotly visualizations
69
+ title="Point-E Demo - Convert Text to 3D Point Clouds",
70
+ description="Generate and visualize 3D point clouds from textual descriptions using OpenAI's Point-E framework."
 
 
 
 
 
 
 
71
  )
72
+
73
+ # Enable queuing and launch Gradio app
74
  demo.queue(max_size=30)
75
+ demo.launch(debug=True)