|
import numpy as np |
|
import plotly.graph_objects as go |
|
|
|
import torch |
|
from tqdm.auto import tqdm |
|
|
|
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config |
|
from point_e.diffusion.sampler import PointCloudSampler |
|
from point_e.models.download import load_checkpoint |
|
from point_e.models.configs import MODEL_CONFIGS, model_from_config |
|
from point_e.util.plotting import plot_point_cloud |
|
|
|
import gradio as gr |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
print('Creating base model...') |
|
base_name = 'base40M-textvec' |
|
base_model = model_from_config(MODEL_CONFIGS[base_name], device) |
|
base_model.eval() |
|
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) |
|
|
|
|
|
print('Creating upsample model...') |
|
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) |
|
upsampler_model.eval() |
|
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) |
|
|
|
|
|
print('Downloading base checkpoint...') |
|
base_model.load_state_dict(load_checkpoint(base_name, device)) |
|
|
|
print('Downloading upsampler checkpoint...') |
|
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) |
|
|
|
|
|
sampler = PointCloudSampler( |
|
device=device, |
|
models=[base_model, upsampler_model], |
|
diffusions=[base_diffusion, upsampler_diffusion], |
|
num_points=[1024, 4096 - 1024], |
|
aux_channels=['R', 'G', 'B'], |
|
guidance_scale=[3.0, 0.0], |
|
model_kwargs_key_filter=('texts', ''), |
|
) |
|
|
|
|
|
def create_point_cloud(inp): |
|
samples = None |
|
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inp]))): |
|
samples = x |
|
|
|
pc = sampler.output_to_point_clouds(samples)[0] |
|
|
|
|
|
if 'R' in pc.channels and 'G' in pc.channels and 'B' in pc.channels: |
|
|
|
colors = ( |
|
pc.channels['R'] / 255.0, |
|
pc.channels['G'] / 255.0, |
|
pc.channels['B'] / 255.0 |
|
) |
|
else: |
|
|
|
colors = 'blue' |
|
|
|
|
|
fig = go.Figure( |
|
data=[ |
|
go.Scatter3d( |
|
x=pc.coords[:, 0], |
|
y=pc.coords[:, 1], |
|
z=pc.coords[:, 2], |
|
mode='markers', |
|
marker=dict( |
|
size=2, |
|
color=colors, |
|
colorscale='Viridis' if isinstance(colors, tuple) else None, |
|
opacity=0.8 |
|
) |
|
) |
|
] |
|
) |
|
|
|
fig.update_layout( |
|
scene=dict( |
|
xaxis_title="X", |
|
yaxis_title="Y", |
|
zaxis_title="Z", |
|
), |
|
margin=dict(r=0, l=0, b=0, t=0) |
|
) |
|
|
|
return fig |
|
|
|
|
|
demo = gr.Interface( |
|
fn=create_point_cloud, |
|
inputs="text", |
|
outputs=gr.Plot(), |
|
title="Point-E Demo - Convert Text to 3D Point Clouds", |
|
description="Generate and visualize 3D point clouds from textual descriptions using OpenAI's Point-E framework." |
|
) |
|
|
|
|
|
demo.queue(max_size=30) |
|
demo.launch(debug=True) |