|
import gradio as gr |
|
|
|
|
|
import torch |
|
from tqdm.auto import tqdm |
|
|
|
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config |
|
from point_e.diffusion.sampler import PointCloudSampler |
|
from point_e.models.download import load_checkpoint |
|
from point_e.models.configs import MODEL_CONFIGS, model_from_config |
|
from point_e.util.plotting import plot_point_cloud |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
print('creating base model...') |
|
base_name = 'base40M-textvec' |
|
base_model = model_from_config(MODEL_CONFIGS[base_name], device) |
|
base_model.eval() |
|
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) |
|
|
|
print('creating upsample model...') |
|
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) |
|
upsampler_model.eval() |
|
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) |
|
|
|
print('downloading base checkpoint...') |
|
base_model.load_state_dict(load_checkpoint(base_name, device)) |
|
|
|
print('downloading upsampler checkpoint...') |
|
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) |
|
|
|
sampler = PointCloudSampler( |
|
device=device, |
|
models=[base_model, upsampler_model], |
|
diffusions=[base_diffusion, upsampler_diffusion], |
|
num_points=[1024, 4096 - 1024], |
|
aux_channels=['R', 'G', 'B'], |
|
guidance_scale=[3.0, 0.0], |
|
model_kwargs_key_filter=('texts', ''), |
|
) |
|
|
|
def inference(prompt): |
|
samples = None |
|
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])): |
|
samples = x |
|
pc = sampler.output_to_point_clouds(samples)[0] |
|
pc = sampler.output_to_point_clouds(samples)[0] |
|
fig = plot_point_cloud(pc, grid_size=3, fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75))) |
|
return fig |
|
|
|
demo = gr.Interface(fn=inference, inputs="text", outputs=gr.Plot()) |
|
demo.launch(debug=True) |
|
|