Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, Request
|
2 |
from pydantic import BaseModel
|
3 |
from llama_cpp import Llama
|
@@ -5,18 +6,12 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
5 |
import uvicorn
|
6 |
import re
|
7 |
from dotenv import load_dotenv
|
8 |
-
from spaces.zero import ZeroGPU
|
9 |
import spaces
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
-
try:
|
16 |
-
ZeroGPU.initialize()
|
17 |
-
except Exception:
|
18 |
-
pass
|
19 |
-
|
20 |
global_data = {
|
21 |
'models': {},
|
22 |
'tokens': {
|
@@ -60,7 +55,8 @@ class ModelManager:
|
|
60 |
def load_model(self, model_config):
|
61 |
try:
|
62 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
63 |
-
except Exception:
|
|
|
64 |
pass
|
65 |
|
66 |
def load_all_models(self):
|
@@ -79,7 +75,8 @@ class ModelManager:
|
|
79 |
global_data['models'] = {model['name']: model['model'] for model in models}
|
80 |
self.loaded = True
|
81 |
return global_data['models']
|
82 |
-
except Exception:
|
|
|
83 |
pass
|
84 |
return {}
|
85 |
|
@@ -115,12 +112,14 @@ def remove_repetitive_responses(responses):
|
|
115 |
normalized_response = remove_duplicates(response['response'])
|
116 |
if normalized_response not in seen:
|
117 |
seen.add(normalized_response)
|
|
|
|
|
118 |
unique_responses.append({'model': response['model'], 'response': normalized_response})
|
119 |
return unique_responses
|
120 |
|
121 |
-
@app.post("/
|
122 |
@spaces.GPU(duration=0)
|
123 |
-
async def
|
124 |
try:
|
125 |
normalized_message = normalize_input(request.message)
|
126 |
with ThreadPoolExecutor() as executor:
|
@@ -128,17 +127,13 @@ async def generate(request: ChatRequest):
|
|
128 |
top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
|
129 |
for model in global_data['models'].values()]
|
130 |
responses = []
|
131 |
-
for future, model_name in zip(as_completed(futures), global_data['models']):
|
132 |
-
|
133 |
-
responses.append({'model': model_name, 'response':
|
134 |
-
|
135 |
-
return
|
136 |
-
except NotImplementedError as nie:
|
137 |
-
raise HTTPException(status_code=500, detail=str(nie))
|
138 |
-
except ZeroGPU.ZeroGPUException as gpu_exc:
|
139 |
-
raise HTTPException(status_code=500, detail=f"ZeroGPU Error: {gpu_exc}")
|
140 |
except Exception as e:
|
141 |
-
raise HTTPException(status_code=500, detail=
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
+
|
2 |
from fastapi import FastAPI, HTTPException, Request
|
3 |
from pydantic import BaseModel
|
4 |
from llama_cpp import Llama
|
|
|
6 |
import uvicorn
|
7 |
import re
|
8 |
from dotenv import load_dotenv
|
|
|
9 |
import spaces
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
global_data = {
|
16 |
'models': {},
|
17 |
'tokens': {
|
|
|
55 |
def load_model(self, model_config):
|
56 |
try:
|
57 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error loading model {model_config['name']}: {e}")
|
60 |
pass
|
61 |
|
62 |
def load_all_models(self):
|
|
|
75 |
global_data['models'] = {model['name']: model['model'] for model in models}
|
76 |
self.loaded = True
|
77 |
return global_data['models']
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Error loading models: {e}")
|
80 |
pass
|
81 |
return {}
|
82 |
|
|
|
112 |
normalized_response = remove_duplicates(response['response'])
|
113 |
if normalized_response not in seen:
|
114 |
seen.add(normalized_response)
|
115 |
+
|
116 |
+
|
117 |
unique_responses.append({'model': response['model'], 'response': normalized_response})
|
118 |
return unique_responses
|
119 |
|
120 |
+
@app.post("/chat/")
|
121 |
@spaces.GPU(duration=0)
|
122 |
+
async def chat(request: ChatRequest):
|
123 |
try:
|
124 |
normalized_message = normalize_input(request.message)
|
125 |
with ThreadPoolExecutor() as executor:
|
|
|
127 |
top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
|
128 |
for model in global_data['models'].values()]
|
129 |
responses = []
|
130 |
+
for future, model_name in zip(as_completed(futures), global_data['models'].keys()):
|
131 |
+
response = future.result()
|
132 |
+
responses.append({'model': model_name, 'response': response})
|
133 |
+
unique_responses = remove_repetitive_responses(responses)
|
134 |
+
return unique_responses
|
|
|
|
|
|
|
|
|
135 |
except Exception as e:
|
136 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|