Spaces:
Running
Running
import os | |
import json | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import gradio as gr | |
from inference import OcrReorderPipeline | |
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer | |
# 1) Load your model + tokenizer + processor as before | |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small" | |
model = LayoutLMv3Model.from_pretrained(repo) | |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor") | |
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False) | |
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0) | |
def infer(image_path, json_file): | |
# 2) Extract the filename user uploaded | |
img_name = os.path.basename(image_path) | |
# 3) Load the entire JSON; assume it’s a list of entries | |
with open(json_file.name, "r", encoding="utf-8") as f: | |
data = json.load(f) | |
# 4) Find the entry matching this image | |
entry = next((e for e in data if e["img_name"] == img_name), None) | |
if entry is None: | |
return f"❌ No JSON entry found for image '{img_name}'" | |
words = entry["src_word_list"] | |
boxes = entry["src_wordbox_list"] | |
# 5) Read the image, encode to base64 for your pipeline | |
img = Image.open(image_path).convert("RGB") | |
buf = BytesIO(); img.save(buf, format="PNG") | |
b64 = base64.b64encode(buf.getvalue()).decode() | |
# 6) Call your pipeline and return the reordered text | |
return pipe(b64, words, boxes)[0] | |
demo = gr.Interface( | |
fn=infer, | |
inputs=[ | |
# get the file path so we can match the filename | |
gr.Image(type="filepath", label="Upload Image"), | |
# this is the JSON file containing a list of entries | |
gr.File(label="Upload JSON file") | |
], | |
outputs="text", | |
title="OCR Reorder (match image → JSON entry)" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |