Spaces:
Running
Running
File size: 4,044 Bytes
b701d44 5b9baff 419d02f a01cae7 419d02f a01cae7 0d4b0fc a01cae7 0d4b0fc a01cae7 419d02f a01cae7 419d02f fabf362 419d02f fabf362 a01cae7 2ebc710 fabf362 2ebc710 419d02f 2ebc710 ab9088f 419d02f fabf362 5b9baff 419d02f ab9088f a01cae7 fabf362 419d02f a01cae7 419d02f a01cae7 419d02f a01cae7 419d02f a01cae7 419d02f a01cae7 419d02f 5a0deb7 a01cae7 419d02f ab9088f a01cae7 419d02f 5b9baff a01cae7 5b9baff b701d44 5b9baff b701d44 5b9baff 419d02f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
import json
import base64
from io import BytesIO
from PIL import Image
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from transformers import (
AutoProcessor,
LayoutLMv3Model,
T5ForConditionalGeneration,
AutoTokenizer
)
# ββ 1) MODEL SETUP βββββββββββββββββββββββββββββββββββββββββββββββββββββ
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
# Processor
processor = AutoProcessor.from_pretrained(
repo,
subfolder="preprocessor",
apply_ocr=False
)
# Encoder & Decoder
layout_model = LayoutLMv3Model.from_pretrained(repo).to("cpu").eval()
t5_model = T5ForConditionalGeneration.from_pretrained(repo).to("cpu").eval()
tokenizer = AutoTokenizer.from_pretrained(
repo, subfolder="preprocessor"
)
# Ensure decoder_start_token_id and bos_token_id are set
if t5_model.config.decoder_start_token_id is None:
fallback = tokenizer.bos_token_id or tokenizer.eos_token_id
t5_model.config.decoder_start_token_id = fallback
if t5_model.config.bos_token_id is None:
t5_model.config.bos_token_id = t5_model.config.decoder_start_token_id
# Projection head
ckpt_file = hf_hub_download(repo_id=repo, filename="pytorch_model.bin")
ckpt = torch.load(ckpt_file, map_location="cpu")
proj_state = ckpt["projection"]
projection = torch.nn.Sequential(
torch.nn.Linear(768, t5_model.config.d_model),
torch.nn.LayerNorm(t5_model.config.d_model),
torch.nn.GELU()
).to("cpu")
projection.load_state_dict(proj_state)
# ββ 2) INFERENCE FUNCTION βββββββββββββββββββββββββββββββββββββββββββββ
def infer(image_path, json_file):
img_name = os.path.basename(image_path)
# Load NDJSON
data = []
with open(json_file.name, "r", encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data.append(json.loads(line))
entry = next((e for e in data if e.get("img_name") == img_name), None)
if entry is None:
return f"β No JSON entry found for image '{img_name}'"
words = entry.get("src_word_list", [])
boxes = entry.get("src_wordbox_list", [])
# Preprocess image + tokens
img = Image.open(image_path).convert("RGB")
encoding = processor(
[img], [words], boxes=[boxes],
return_tensors="pt", padding=True, truncation=True
)
pixel_values = encoding.pixel_values.to("cpu")
input_ids = encoding.input_ids.to("cpu")
attention_mask = encoding.attention_mask.to("cpu")
bbox = encoding.bbox.to("cpu")
# Forward pass
with torch.no_grad():
# LayoutLMv3 encoding
lm_out = layout_model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
bbox=bbox
)
seq_len = input_ids.size(1)
text_feats = lm_out.last_hidden_state[:, :seq_len, :]
# Projection + T5 decoding
proj_feats = projection(text_feats)
gen_ids = t5_model.generate(
inputs_embeds=proj_feats,
attention_mask=attention_mask,
max_length=512,
decoder_start_token_id=t5_model.config.decoder_start_token_id,
bos_token_id=t5_model.config.bos_token_id
)
# Decode and return
result = tokenizer.batch_decode(
gen_ids, skip_special_tokens=True
)[0]
return result
# ββ 3) GRADIO INTERFACE ββββββββββββββββββββββββββββββββββββββββββββββββ
demo = gr.Interface(
fn=infer,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.File(label="Upload JSON (NDJSON)")
],
outputs="text",
title="OCR Reorder Pipeline"
)
if __name__ == "__main__":
demo.launch(share=True)
|