File size: 2,340 Bytes
f51a56a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import shutil
import requests
import sys
from typing import Optional, List, Tuple
import json
from langchain_community.llms import HuggingFaceHub


##Loading the Model to answer questions
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel, PeftConfig


peft_model_id = "Ubaidbhat/zephr_finance_finetuned"
config = PeftConfig.from_pretrained(peft_model_id)
print(config.base_model_name_or_path)
bnb_config = BitsAndBytesConfig(
    load_in_4bit = True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

d_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None

model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map=d_map)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
model = model.merge_and_unload()





##Creating base Model Chain
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from transformers import pipeline
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import LLMChain

text_generation_pipeline = pipeline(
    model=model,
    tokenizer=tokenizer,
    task="text-generation",
    temperature=0.2,
    do_sample=True,
    repetition_penalty=1.1,
    return_full_text=True,
    max_new_tokens=400,
    pad_token_id=tokenizer.eos_token_id,
)

llm = HuggingFacePipeline(pipeline=text_generation_pipeline)

prompt_template = """
<|system|>
Answer the question based on your knowledge.
</s>
<|user|>
{question}
</s>
<|assistant|>
"""

prompt = PromptTemplate(
    input_variables=["question"],
    template=prompt_template,
)

llm_chain = prompt | llm | StrOutputParser()

def inference(question):
    llmAnswer = llm_chain.invoke({"question": question})
    llmAnswer = llmAnswer.rstrip()
    return llmAnswer



import gradio as gr
from langchain_core.runnables import RunnablePassthrough

def predict(question):
    return inference(question)
    
pred = gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(label="Question"),
    ],
    outputs="text",
    title="Finetuned Zephr Model in the Finance Domain."
)

pred.launch(share=True)