Jacksperoni commited on
Commit
149889a
·
verified ·
1 Parent(s): 4561e92

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import pandas as pd
3
+ import shap
4
+ from shap.plots._force_matplotlib import draw_additive_plot
5
+ import gradio as gr
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+
9
+ # load the model from disk
10
+ loaded_model = pickle.load(open("h22_xgb.pkl", 'rb'))
11
+
12
+ # Setup SHAP
13
+ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
+
15
+ # Create the main function for server
16
+ def main_func(ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance):
17
+ new_row = pd.DataFrame.from_dict({'ValueDiversity':ValueDiversity,'AdequateResources':AdequateResources,
18
+ 'Voice':Voice,'GrowthAdvancement':GrowthAdvancement,'Workload':Workload,
19
+ 'WorkLifeBalance':WorkLifeBalance}, orient = 'index').transpose()
20
+
21
+ prob = loaded_model.predict_proba(new_row)
22
+
23
+ shap_values = explainer(new_row)
24
+ # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
25
+ # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
26
+ plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
27
+
28
+ plt.tight_layout()
29
+ local_plot = plt.gcf()
30
+ plt.rcParams['figure.figsize'] = 6,4
31
+ plt.close()
32
+
33
+ return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot
34
+
35
+ # Create the UI
36
+ title = "**Employee Turnover Predictor & Interpreter** 🪐"
37
+ description1 = """
38
+ This app takes six inputs about employees' satisfaction with different aspects of their work (such as work-life balance, ...) and predicts whether the employee intends to stay with the employer or leave. There are two outputs from the app: 1- the predicted probability of stay or leave, 2- Shapley's force-plot which visualizes the extent to which each factor impacts the stay/ leave prediction.
39
+ """
40
+
41
+ description2 = """
42
+ To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. ✨
43
+ """
44
+
45
+ with gr.Blocks(title=title) as demo:
46
+ gr.Markdown(f"## {title}")
47
+ # gr.Markdown("""![marketing](types-of-employee-turnover.jpg)""")
48
+ gr.Markdown(description1)
49
+ gr.Markdown("""---""")
50
+ gr.Markdown(description2)
51
+ gr.Markdown("""---""")
52
+ with gr.Row():
53
+ with gr.Column():
54
+ ValueDiversity = gr.Slider(label="ValueDiversity Score", minimum=1, maximum=5, value=4, step=.1)
55
+ AdequateResources = gr.Slider(label="AdequateResources Score", minimum=1, maximum=5, value=4, step=.1)
56
+ Voice = gr.Slider(label="Voice Score", minimum=1, maximum=5, value=4, step=.1)
57
+ GrowthAdvancement = gr.Slider(label="GrowthAdvancement Score", minimum=1, maximum=5, value=4, step=.1)
58
+ Workload = gr.Slider(label="Workload Score", minimum=1, maximum=5, value=4, step=.1)
59
+ WorkLifeBalance = gr.Slider(label="WorkLifeBalance Score", minimum=1, maximum=5, value=4, step=.1)
60
+ submit_btn = gr.Button("Analyze")
61
+ with gr.Column(visible=True,scale=1, min_width=600) as output_col:
62
+ label = gr.Label(label = "Predicted Label")
63
+ local_plot = gr.Plot(label = 'Shap:')
64
+
65
+ submit_btn.click(
66
+ main_func,
67
+ [ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance],
68
+ [label,local_plot], api_name="Employee_Turnover"
69
+ )
70
+
71
+ gr.Markdown("### Click on any of the examples below to see how it works:")
72
+ gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]],
73
+ [ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance],
74
+ [label,local_plot], main_func, cache_examples=True)
75
+
76
+ demo.launch()