paragon-analytics commited on
Commit
a6d17eb
·
1 Parent(s): 6110a26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -32,10 +32,10 @@ def med_score(x):
32
  score_1 = x['score']
33
  return round(score_1,3)
34
 
35
- def sym_score(x):
36
- label2sym= x['label']
37
- score_1sym = x['score']
38
- return round(score_1sym,3)
39
 
40
  ##
41
 
@@ -49,15 +49,17 @@ def adr_predict(x):
49
  local_plot = shap.plots.text(shap_values[0], display=False)
50
 
51
  med = med_score(classifier(x+str(", There is a medication."))[0])
52
- sym = sym_score(classifier(x+str(", There is a symptom."))[0])
53
 
54
- return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}, {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
 
55
 
56
 
57
  def main(prob1):
58
  text = str(prob1).lower()
59
  obj = adr_predict(text)
60
- return obj[0],obj[1],obj[2],obj[3]
 
61
 
62
  title = "Welcome to **ADR Detector** 🪐"
63
  description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
@@ -77,19 +79,21 @@ with gr.Blocks(title=title) as demo:
77
 
78
  with gr.Column(visible=True) as output_col:
79
  med = gr.Label(label = "Contains Medication")
80
- sym = gr.Label(label = "Contains Symptoms")
81
 
82
  submit_btn.click(
83
  main,
84
  [prob1],
85
  [label
86
- ,local_plot, med, sym
 
87
  ], api_name="adr"
88
  )
89
 
90
  with gr.Row():
91
  gr.Markdown("### Click on any of the examples below to see how it works:")
92
- gr.Examples([["Severe headache after Aspirin."],["Minor headache after Acetaminophen."]], [prob1], [label,local_plot, med, sym
 
93
  ], main, cache_examples=True)
94
 
95
  demo.launch()
 
32
  score_1 = x['score']
33
  return round(score_1,3)
34
 
35
+ # def sym_score(x):
36
+ # label2sym= x['label']
37
+ # score_1sym = x['score']
38
+ # return round(score_1sym,3)
39
 
40
  ##
41
 
 
49
  local_plot = shap.plots.text(shap_values[0], display=False)
50
 
51
  med = med_score(classifier(x+str(", There is a medication."))[0])
52
+ # sym = sym_score(classifier(x+str(", There is a symptom."))[0])
53
 
54
+ return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}
55
+ # , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
56
 
57
 
58
  def main(prob1):
59
  text = str(prob1).lower()
60
  obj = adr_predict(text)
61
+ return obj[0],obj[1],obj[2]
62
+ # ,obj[3]
63
 
64
  title = "Welcome to **ADR Detector** 🪐"
65
  description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
 
79
 
80
  with gr.Column(visible=True) as output_col:
81
  med = gr.Label(label = "Contains Medication")
82
+ # sym = gr.Label(label = "Contains Symptoms")
83
 
84
  submit_btn.click(
85
  main,
86
  [prob1],
87
  [label
88
+ ,local_plot, med
89
+ # , sym
90
  ], api_name="adr"
91
  )
92
 
93
  with gr.Row():
94
  gr.Markdown("### Click on any of the examples below to see how it works:")
95
+ gr.Examples([["Severe headache after Aspirin."],["Minor headache after Acetaminophen."]], [prob1], [label,local_plot, med
96
+ # , sym
97
  ], main, cache_examples=True)
98
 
99
  demo.launch()