paragon-analytics commited on
Commit
2695c04
·
1 Parent(s): 261ea5b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -29
app.py CHANGED
@@ -42,10 +42,10 @@ explainer = shap.Explainer(pred)
42
  # score_1sym = x['score']
43
  # return round(score_1sym,3)
44
 
45
- ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
46
- ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
47
 
48
- ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
49
  #
50
 
51
  def adr_predict(x):
@@ -60,39 +60,41 @@ def adr_predict(x):
60
  # med = med_score(classifier(x+str(", There is a medication."))[0])
61
  # sym = sym_score(classifier(x+str(", There is a symptom."))[0])
62
 
63
- res = ner_pipe(x)
64
 
65
- entity_colors = {
66
- 'Severity': 'red',
67
- 'Sign_symptom': 'green',
68
- 'Medication': 'blue',
69
- 'Age': 'yellow',
70
- 'Sex':'yellow',
71
- 'Diagnostic_procedure':'gray',
72
- 'Biological_structure':'silver'}
73
-
74
- htext = ""
75
- prev_end = 0
76
-
77
- for entity in res:
78
- start = entity['start']
79
- end = entity['end']
80
- word = entity['word'].replace("##", "")
81
- color = entity_colors[entity['entity_group']]
82
 
83
- htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
84
- prev_end = end
85
 
86
- htext += x[prev_end:]
87
 
88
- return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
 
89
  # ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
90
 
91
 
92
  def main(prob1):
93
  text = str(prob1).lower()
94
  obj = adr_predict(text)
95
- return obj[0],obj[1],obj[2]
 
96
 
97
  title = "Welcome to **ADR Detector** 🪐"
98
  description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
@@ -112,7 +114,7 @@ with gr.Blocks(title=title) as demo:
112
 
113
  with gr.Column(visible=True) as output_col:
114
  local_plot = gr.HTML(label = 'Shap:')
115
- htext = gr.HTML(label="NER")
116
  # med = gr.Label(label = "Contains Medication")
117
  # sym = gr.Label(label = "Contains Symptoms")
118
 
@@ -120,7 +122,8 @@ with gr.Blocks(title=title) as demo:
120
  main,
121
  [prob1],
122
  [label
123
- ,local_plot, htext
 
124
  # , med, sym
125
  ], api_name="adr"
126
  )
@@ -129,7 +132,8 @@ with gr.Blocks(title=title) as demo:
129
  gr.Markdown("### Click on any of the examples below to see how it works:")
130
  gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
131
  ["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
132
- [prob1], [label,local_plot, htext
 
133
  # , med, sym
134
  ], main, cache_examples=True)
135
 
 
42
  # score_1sym = x['score']
43
  # return round(score_1sym,3)
44
 
45
+ # ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
46
+ # ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
47
 
48
+ # ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
49
  #
50
 
51
  def adr_predict(x):
 
60
  # med = med_score(classifier(x+str(", There is a medication."))[0])
61
  # sym = sym_score(classifier(x+str(", There is a symptom."))[0])
62
 
63
+ # res = ner_pipe(x)
64
 
65
+ # entity_colors = {
66
+ # 'Severity': 'red',
67
+ # 'Sign_symptom': 'green',
68
+ # 'Medication': 'blue',
69
+ # 'Age': 'yellow',
70
+ # 'Sex':'yellow',
71
+ # 'Diagnostic_procedure':'gray',
72
+ # 'Biological_structure':'silver'}
73
+
74
+ # htext = ""
75
+ # prev_end = 0
76
+
77
+ # for entity in res:
78
+ # start = entity['start']
79
+ # end = entity['end']
80
+ # word = entity['word'].replace("##", "")
81
+ # color = entity_colors[entity['entity_group']]
82
 
83
+ # htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
84
+ # prev_end = end
85
 
86
+ # htext += x[prev_end:]
87
 
88
+ return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot
89
+ # ,htext
90
  # ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
91
 
92
 
93
  def main(prob1):
94
  text = str(prob1).lower()
95
  obj = adr_predict(text)
96
+ return obj[0],obj[1]
97
+ # ,obj[2]
98
 
99
  title = "Welcome to **ADR Detector** 🪐"
100
  description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
 
114
 
115
  with gr.Column(visible=True) as output_col:
116
  local_plot = gr.HTML(label = 'Shap:')
117
+ # htext = gr.HTML(label="NER")
118
  # med = gr.Label(label = "Contains Medication")
119
  # sym = gr.Label(label = "Contains Symptoms")
120
 
 
122
  main,
123
  [prob1],
124
  [label
125
+ ,local_plot
126
+ # , htext
127
  # , med, sym
128
  ], api_name="adr"
129
  )
 
132
  gr.Markdown("### Click on any of the examples below to see how it works:")
133
  gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
134
  ["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
135
+ [prob1], [label,local_plot
136
+ # , htext
137
  # , med, sym
138
  ], main, cache_examples=True)
139