Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import shap | |
from transformers import ( | |
pipeline, | |
AutoTokenizer, | |
AutoModelForSequenceClassification, | |
AutoModelForTokenClassification | |
) | |
import gradio as gr | |
# βββββββββ 1) Device setup βββββββββ | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# βββββββββ 2) ADR classifier βββββββββ | |
model_name = "paragon-analytics/ADRv1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) | |
pred_pipeline = pipeline( | |
"text-classification", | |
model=model, | |
tokenizer=tokenizer, | |
return_all_scores=True, | |
device=0 if device.type == "cuda" else -1 | |
) | |
def predict_proba(texts): | |
if isinstance(texts, str): | |
texts = [texts] | |
results = pred_pipeline(texts) | |
return np.array([[d["score"] for d in sample] for sample in results]) | |
def predict_proba_shap(inputs): | |
texts = [" ".join(x) if isinstance(x, list) else x for x in inputs] | |
return predict_proba(texts) | |
# βββββββββ 3) SHAP explainer βββββββββ | |
masker = shap.maskers.Text(tokenizer) | |
_example = pred_pipeline(["test"])[0] | |
class_labels = [d["label"] for d in _example] | |
explainer = shap.Explainer( | |
predict_proba_shap, | |
masker=masker, | |
output_names=class_labels | |
) | |
# βββββββββ 4) Biomedical NER βββββββββ | |
ner_name = "d4data/biomedical-ner-all" | |
ner_tokenizer = AutoTokenizer.from_pretrained(ner_name) | |
ner_model = AutoModelForTokenClassification.from_pretrained(ner_name).to(device) | |
ner_pipe = pipeline( | |
"ner", | |
model=ner_model, | |
tokenizer=ner_tokenizer, | |
aggregation_strategy="simple", | |
device=0 if device.type == "cuda" else -1 | |
) | |
ENTITY_COLORS = { | |
"Severity": "red", | |
"Sign_symptom": "green", | |
"Medication": "lightblue", | |
"Age": "yellow", | |
"Sex": "yellow", | |
"Diagnostic_procedure": "gray", | |
"Biological_structure": "silver" | |
} | |
# βββββββββ 5) Prediction + SHAP + NER βββββββββ | |
def adr_predict(text: str): | |
# Probabilities | |
probs = predict_proba([text])[0] | |
prob_dict = {cls: float(probs[i]) for i, cls in enumerate(class_labels)} | |
# SHAP | |
shap_vals = explainer([text]) | |
fig = shap.plots.text(shap_vals[0], display=False) | |
# NER highlight | |
ents = ner_pipe(text) | |
highlighted, last = "", 0 | |
for ent in ents: | |
s, e = ent["start"], ent["end"] | |
w = ent["word"].replace("##", "") | |
color = ENTITY_COLORS.get(ent["entity_group"], "lightgray") | |
highlighted += text[last:s] + f"<mark style='background-color:{color};'>{w}</mark>" | |
last = e | |
highlighted += text[last:] | |
return prob_dict, fig, highlighted | |
# βββββββββ 6) Gradio UI βββββββββ | |
with gr.Blocks() as demo: | |
gr.Markdown("## Welcome to **ADR Detector** πͺ") | |
gr.Markdown( | |
"Predicts how likely your text describes a **severe** vs. **non-severe** adverse reaction. \n" | |
"_(Not for medical or diagnostic use.)_" | |
) | |
txt = gr.Textbox( | |
label="Enter Your Text Here:", lines=3, | |
placeholder="Type a sentence about an adverse reactionβ¦" | |
) | |
btn = gr.Button("Analyze") | |
with gr.Row(): | |
out_prob = gr.Label(label="Predicted Probabilities") | |
out_shap = gr.Plot(label="SHAP Explanation") | |
out_ner = gr.HTML(label="Biomedical Entities Highlighted") | |
btn.click( | |
fn=adr_predict, | |
inputs=txt, | |
outputs=[out_prob, out_shap, out_ner] | |
) | |
gr.Examples( | |
examples=[ | |
"A 35-year-old male experienced severe headache after taking Aspirin.", | |
"A 35-year-old female had minor abdominal pain after Acetaminophen." | |
], | |
inputs=txt, | |
outputs=[out_prob, out_shap, out_ner], | |
fn=adr_predict, | |
cache_examples=False # β disable startup caching here | |
) | |
if __name__ == "__main__": | |
demo.launch() | |