ADR_Detector / app.py
paragon-analytics's picture
Update app.py
41b32e2 verified
raw
history blame
4.36 kB
import numpy as np
import torch
import shap
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForTokenClassification
)
import gradio as gr
# 1) Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 2) Load ADR classifier model & tokenizer
model_name = "paragon-analytics/ADRv1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
# 3) Build HF text-classification pipeline
pred_pipeline = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer,
return_all_scores=True,
device=0 if device.type == "cuda" else -1
)
# 4) Base predict_proba: List[str] → np.ndarray of shape (n_samples, n_classes)
def predict_proba(texts):
if isinstance(texts, str):
texts = [texts]
results = pred_pipeline(texts)
# results: List[List[{"label":…, "score":…}]]
probs = np.array([[d["score"] for d in sample] for sample in results])
return probs
# 5) SHAP-compatible wrapper: joins token lists back into strings
def predict_proba_shap(inputs):
# inputs: List[str] or List[List[str]]
texts = [
" ".join(x) if isinstance(x, list) else x
for x in inputs
]
return predict_proba(texts)
# 6) Instantiate SHAP explainer with a Text masker
masker = shap.maskers.Text(tokenizer)
# Grab output class labels from a dummy sample
_example = pred_pipeline(["test"])[0]
class_labels = [d["label"] for d in _example]
explainer = shap.Explainer(
predict_proba_shap,
masker=masker,
output_names=class_labels
)
# 7) Load biomedical NER model & pipeline
ner_model_name = "d4data/biomedical-ner-all"
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_name)
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_name).to(device)
ner_pipe = pipeline(
"ner",
model=ner_model,
tokenizer=ner_tokenizer,
aggregation_strategy="simple",
device=0 if device.type == "cuda" else -1
)
# 8) Mapping for entity highlight colors
ENTITY_COLORS = {
"Severity": "red",
"Sign_symptom": "green",
"Medication": "lightblue",
"Age": "yellow",
"Sex": "yellow",
"Diagnostic_procedure": "gray",
"Biological_structure": "silver"
}
# 9) Full predict + explain + NER function
def adr_predict(text: str):
# a) Predict probabilities
probs = predict_proba([text])[0]
prob_dict = {label: float(probs[i]) for i, label in enumerate(class_labels)}
# b) SHAP explanation → Matplotlib figure
shap_values = explainer([text])
fig = shap.plots.text(shap_values[0], display=False)
# c) NER highlighting
ents = ner_pipe(text)
highlighted = ""
last_idx = 0
for ent in ents:
start, end = ent["start"], ent["end"]
word = ent["word"].replace("##", "")
color = ENTITY_COLORS.get(ent["entity_group"], "lightgray")
highlighted += (
text[last_idx:start]
+ f"<mark style='background-color:{color};'>{word}</mark>"
)
last_idx = end
highlighted += text[last_idx:]
return prob_dict, fig, highlighted
# 10) Build Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Welcome to **ADR Detector** 🪐")
gr.Markdown(
"Predicts the likelihood your text describes a **severe** vs. **non-severe** adverse reaction. \n"
"_(Not for medical or diagnostic use.)_"
)
txt = gr.Textbox(
label="Enter Your Text Here:",
lines=3,
placeholder="Type a sentence about an adverse reaction…"
)
btn = gr.Button("Analyze")
with gr.Row():
label_out = gr.Label(label="Predicted Probabilities")
shap_out = gr.Plot(label="SHAP Explanation")
ner_out = gr.HTML(label="Biomedical Entities Highlighted")
btn.click(
fn=adr_predict,
inputs=txt,
outputs=[label_out, shap_out, ner_out]
)
gr.Examples(
examples=[
"A 35-year-old male experienced severe headache after taking Aspirin.",
"A 35-year-old female had minor abdominal pain after Acetaminophen."
],
inputs=txt,
outputs=[label_out, shap_out, ner_out],
fn=adr_predict,
cache_examples=True
)
if __name__ == "__main__":
demo.launch()