import gradio as gr from asr import transcribe, ASR_EXAMPLES, ASR_LANGUAGES, ASR_NOTE mms_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(), gr.Dropdown( [f"{k} ({v})" for k, v in ASR_LANGUAGES.items()], label="Language", value="eng English", ), # gr.Checkbox(label="Use Language Model (if available)", default=True), ], outputs="text", examples=ASR_EXAMPLES, title="Speech-to-text", description=( "Transcribe audio from a microphone or input file in your desired language." ), article=ASR_NOTE, allow_flagging="never", ) with gr.Blocks() as demo: gr.HTML( """
UNESCO Meta Hugging Face Banner

Language Transcriber powered by UNESCO, Meta and Hugging Face

""" ) gr.Markdown( "

MMS: Scaling Speech Technology to 1000+ languages demo. See our blog post and paper.

" ) gr.HTML( """
You can also finetune MMS models on your data using the recipes provides here.
""" ) gr.HTML( """
Duplicate Space for more control and no queue.
""" ) mms_transcribe.render() gr.HTML( """ """ ) if __name__ == "__main__": demo.queue() demo.launch()