Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from langchain.prompts import ChatPromptTemplate, PromptTemplate
|
4 |
+
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
|
5 |
+
from urllib.parse import urljoin, urlparse
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
from langchain_chroma import Chroma
|
9 |
+
import requests
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
+
from langchain_core.prompts import ChatPromptTemplate
|
12 |
import gradio as gr
|
13 |
+
from PyPDF2 import PdfReader
|
14 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
|
16 |
+
groq_api_key= os.environ.get('ACCESS')
|
17 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
|
|
|
|
18 |
|
19 |
+
def scrape_websites(base_urls):
|
20 |
+
try:
|
21 |
+
visited_links = set() # To avoid revisiting the same link
|
22 |
+
content_by_url = {} # Store content from each URL
|
23 |
|
24 |
+
for base_url in base_urls:
|
25 |
+
if not base_url.strip():
|
26 |
+
continue # Skip empty or invalid URLs
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
print(f"Scraping base URL: {base_url}")
|
29 |
+
html_content = fetch_page_content(base_url)
|
30 |
+
if html_content:
|
31 |
+
cleaned_content = clean_body_content(html_content)
|
32 |
+
content_by_url[base_url] = cleaned_content
|
33 |
+
visited_links.add(base_url)
|
34 |
|
35 |
+
# Extract and process all internal links
|
36 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
37 |
+
links = extract_internal_links(base_url, soup)
|
38 |
|
39 |
+
for link in links:
|
40 |
+
if link not in visited_links:
|
41 |
+
print(f"Scraping link: {link}")
|
42 |
+
page_content = fetch_page_content(link)
|
43 |
+
if page_content:
|
44 |
+
cleaned_content = clean_body_content(page_content)
|
45 |
+
content_by_url[link] = cleaned_content
|
46 |
+
visited_links.add(link)
|
47 |
|
48 |
+
# If the link is a PDF file, extract its content
|
49 |
+
if link.lower().endswith('.pdf'):
|
50 |
+
print(f"Extracting PDF content from: {link}")
|
51 |
+
pdf_content = extract_pdf_text(link)
|
52 |
+
if pdf_content:
|
53 |
+
content_by_url[link] = pdf_content
|
|
|
|
|
54 |
|
55 |
+
return content_by_url
|
|
|
56 |
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error during scraping: {e}")
|
59 |
+
return {}
|
60 |
|
61 |
+
|
62 |
+
def fetch_page_content(url):
|
63 |
+
try:
|
64 |
+
response = requests.get(url, timeout=10)
|
65 |
+
response.raise_for_status()
|
66 |
+
return response.text
|
67 |
+
except requests.exceptions.RequestException as e:
|
68 |
+
print(f"Error fetching {url}: {e}")
|
69 |
+
return None
|
70 |
+
|
71 |
+
|
72 |
+
def extract_internal_links(base_url, soup):
|
73 |
+
links = set()
|
74 |
+
for anchor in soup.find_all("a", href=True):
|
75 |
+
href = anchor["href"]
|
76 |
+
full_url = urljoin(base_url, href)
|
77 |
+
if is_internal_link(base_url, full_url):
|
78 |
+
links.add(full_url)
|
79 |
+
return links
|
80 |
+
|
81 |
+
|
82 |
+
def is_internal_link(base_url, link_url):
|
83 |
+
base_netloc = urlparse(base_url).netloc
|
84 |
+
link_netloc = urlparse(link_url).netloc
|
85 |
+
return base_netloc == link_netloc
|
86 |
+
|
87 |
+
|
88 |
+
def extract_pdf_text(pdf_url):
|
89 |
+
try:
|
90 |
+
response = requests.get(pdf_url)
|
91 |
+
response.raise_for_status()
|
92 |
+
with BytesIO(response.content) as file:
|
93 |
+
reader = PdfReader(file)
|
94 |
+
pdf_text = ""
|
95 |
+
for page in reader.pages:
|
96 |
+
pdf_text += page.extract_text()
|
97 |
+
|
98 |
+
return pdf_text if pdf_text else None
|
99 |
+
except requests.exceptions.RequestException as e:
|
100 |
+
print(f"Error fetching PDF {pdf_url}: {e}")
|
101 |
+
return None
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Error reading PDF {pdf_url}: {e}")
|
104 |
+
return None
|
105 |
+
|
106 |
+
|
107 |
+
def clean_body_content(html_content):
|
108 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
109 |
+
|
110 |
+
|
111 |
+
for script_or_style in soup(["script", "style"]):
|
112 |
+
script_or_style.extract()
|
113 |
+
|
114 |
+
|
115 |
+
cleaned_content = soup.get_text(separator="\n")
|
116 |
+
cleaned_content = "\n".join(
|
117 |
+
line.strip() for line in cleaned_content.splitlines() if line.strip()
|
118 |
+
)
|
119 |
+
return cleaned_content
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
website = ["https://www.rra.gov.rw/en/publications",
|
124 |
+
"https://www.rra.gov.rw/en/customs-services"
|
125 |
+
]
|
126 |
+
all_content = scrape_websites(website)
|
127 |
+
|
128 |
+
temp_list = []
|
129 |
+
for url, content in all_content.items():
|
130 |
+
temp_list.append((url, content))
|
131 |
+
|
132 |
+
|
133 |
+
processed_texts = []
|
134 |
+
|
135 |
+
|
136 |
+
for element in temp_list:
|
137 |
+
if isinstance(element, tuple):
|
138 |
+
url, content = element
|
139 |
+
processed_texts.append(f"url: {url}, content: {content}")
|
140 |
+
elif isinstance(element, str):
|
141 |
+
processed_texts.append(element)
|
142 |
+
else:
|
143 |
+
processed_texts.append(str(element))
|
144 |
+
|
145 |
+
def chunk_string(s, chunk_size=1000):
|
146 |
+
return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
|
147 |
+
|
148 |
+
chunked_texts = []
|
149 |
+
|
150 |
+
for text in processed_texts:
|
151 |
+
chunked_texts.extend(chunk_string(text))
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
vectorstore = Chroma(
|
158 |
+
collection_name="RRA",
|
159 |
+
embedding_function=embed_model,
|
160 |
+
persist_directory="./",
|
161 |
+
)
|
162 |
+
|
163 |
+
vectorstore.get().keys()
|
164 |
+
|
165 |
+
vectorstore.add_texts(chunked_texts)
|
166 |
+
|
167 |
+
|
168 |
+
template = ("""
|
169 |
+
You are a friendly and intelligent chatbot designed to assist users in a conversational and human-like manner. Your goal is to provide accurate, helpful, and engaging responses from the provided context: {context} while maintaining a natural tone. Follow these guidelines:
|
170 |
+
|
171 |
+
1. **Greetings:** If the user greets you (e.g., "Morning," "Hello," "Hi"), respond warmly and acknowledge the greeting. For example:
|
172 |
+
- "π Good morning! How can I assist you today?"
|
173 |
+
- "Hello! What can I do for you? π"
|
174 |
+
2. **Extract Information:** If the user asks for specific information, extract only the relevant details from the provided context: {context}.
|
175 |
+
3. **Human-like Interaction:** Respond in a warm, conversational tone. Use emojis occasionally to make the interaction more engaging (e.g., π, π).
|
176 |
+
4. **Stay Updated:** Acknowledge the current date and time to show you are aware of real-time updates.
|
177 |
+
5. **No Extra Content:** If no information matches the user's request, respond politely: "I don't have that information at the moment, but I'm happy to help with something else! π"
|
178 |
+
6. **Personalized Interaction:** Use the user's historical interactions (if available) to tailor your responses and make the conversation more personalized.
|
179 |
+
7. **Direct Data Only:** If the user requests specific data, provide only the requested information without additional explanations unless asked.
|
180 |
+
|
181 |
+
Context: {context}
|
182 |
+
User's Question: {question}
|
183 |
+
Your Response:
|
184 |
+
""")
|
185 |
+
|
186 |
+
rag_prompt = PromptTemplate.from_template(template)
|
187 |
+
|
188 |
+
retriever = vectorstore.as_retriever()
|
189 |
+
|
190 |
+
from langchain_core.output_parsers import StrOutputParser
|
191 |
+
from langchain_core.runnables import RunnablePassthrough
|
192 |
+
|
193 |
+
llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key )
|
194 |
+
|
195 |
+
rag_chain = (
|
196 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
197 |
+
| rag_prompt
|
198 |
+
| llm
|
199 |
+
| StrOutputParser()
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
# Define the RAG memory stream function
|
204 |
+
def rag_memory_stream(message, history):
|
205 |
+
partial_text = ""
|
206 |
+
for new_text in rag_chain.stream(message): # Replace with actual streaming logic
|
207 |
+
partial_text += new_text
|
208 |
+
yield partial_text
|
209 |
+
|
210 |
+
# Title with emojis
|
211 |
+
title = "RRA Chatbot"
|
212 |
+
|
213 |
+
# Short description for the examples section
|
214 |
+
examples = [
|
215 |
+
" What is TIN deregistration? What about Tax account deactivation?",
|
216 |
+
"What is "permanent establishment"?",
|
217 |
+
"when do I receive my registration certificate?"
|
218 |
+
]
|
219 |
+
|
220 |
+
# Custom CSS for styling the interface
|
221 |
+
custom_css = """
|
222 |
+
body {
|
223 |
+
font-family: "Arial", serif;
|
224 |
+
}
|
225 |
+
.gradio-container {
|
226 |
+
font-family: "Times New Roman", serif;
|
227 |
+
}
|
228 |
+
.gr-button {
|
229 |
+
background-color: #007bff; /* Blue button */
|
230 |
+
color: white;
|
231 |
+
border: none;
|
232 |
+
border-radius: 5px;
|
233 |
+
font-size: 16px;
|
234 |
+
padding: 10px 20px;
|
235 |
+
cursor: pointer;
|
236 |
+
}
|
237 |
+
.gr-textbox:focus, .gr-button:focus {
|
238 |
+
outline: none; /* Remove outline focus for a cleaner look */
|
239 |
+
}
|
240 |
+
|
241 |
+
/* Custom CSS for the examples section */
|
242 |
+
.gr-examples {
|
243 |
+
font-size: 30px; /* Increase font size of examples */
|
244 |
+
background-color: #f9f9f9; /* Light background color */
|
245 |
+
border-radius: 30px; /* Rounded corners */
|
246 |
+
}
|
247 |
+
|
248 |
+
.gr-examples .example {
|
249 |
+
background-color: white; /* White background for each example */
|
250 |
+
cursor: pointer; /* Change cursor to pointer on hover */
|
251 |
+
transition: background-color 0.3s ease; /* Smooth hover effect */
|
252 |
+
}
|
253 |
+
|
254 |
+
.gr-examples .example:hover {
|
255 |
+
background-color: #f1f1f1; /* Light gray background on hover */
|
256 |
+
}
|
257 |
"""
|
258 |
+
|
259 |
+
# Create the Chat Interface
|
260 |
demo = gr.ChatInterface(
|
261 |
+
fn=rag_memory_stream,
|
262 |
+
title=title,
|
263 |
+
examples=examples, # Display the short description and example questions
|
264 |
+
fill_height=True,
|
265 |
+
theme="soft",
|
266 |
+
css=custom_css, # Apply the custom CSS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
)
|
268 |
|
269 |
+
# Launch the app
|
270 |
if __name__ == "__main__":
|
271 |
+
demo.launch(share=True, inbrowser=True, height=800, debug=True, width="100%")
|