Help_chatbot / app.py
UKURIKIYEYEZU's picture
Update app.py
6e17553 verified
raw
history blame
21.2 kB
import os
import PyPDF2
from PyPDF2 import PdfReader
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
import pandas as pd
folder_path = "./"
context_data = []
# List all files in the folder
files = os.listdir(folder_path)
# Get list of CSV and Excel files
data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))]
# Process each file
for f, file in enumerate(data_files, 1):
print(f"\nProcessing file {f}: {file}")
file_path = os.path.join(folder_path, file)
try:
# Read the file based on its extension
if file.endswith('.csv'):
df = pd.read_csv(file_path)
else:
df = pd.read_excel(file_path)
# Extract non-empty values from column 2 and append them
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
except Exception as e:
print(f"Error processing file {file}: {str(e)}")
# def extract_text_from_pdf(pdf_path):
# """Extracts text from a PDF file."""
# try:
# with open(pdf_path, "rb") as file:
# reader = PyPDF2.PdfReader(file)
# text = "".join(page.extract_text() or "" for page in reader.pages) # Handle None cases
# return text
# except Exception as e:
# print(f"Error extracting text from {pdf_path}: {e}")
# return ""
# folder_path = "./"
# # Initialize the list to hold the extracted text chunks
# text_chunks = []
# # Get all PDF filenames in the folder
# filenames = [f for f in os.listdir(folder_path) if f.lower().endswith(".pdf")]
# # Process each PDF file
# for index, file in enumerate(filenames, 1):
# print(f"\nProcessing file {index}: {file}")
# pdf_path = os.path.join(folder_path, file)
# try:
# # Extract text from the PDF
# extracted_text = extract_text_from_pdf(pdf_path)
# if extracted_text.strip(): # Ensure extracted text is not just whitespace
# # Split extracted text into chunks of 1000 characters
# chunks = [extracted_text[i:i+2000] for i in range(0, len(extracted_text), 2000)]
# # Append extracted chunks to the list
# text_chunks.extend(chunks)
# else:
# print(f"No text found in the PDF: {file}")
# except Exception as e:
# print(f"Error reading the PDF {file}: {e}")
from urllib.parse import urljoin, urlparse
import requests
from io import BytesIO
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
def scrape_websites(base_urls):
try:
visited_links = set() # To avoid revisiting the same link
content_by_url = {} # Store content from each URL
for base_url in base_urls:
if not base_url.strip():
continue # Skip empty or invalid URLs
print(f"Scraping base URL: {base_url}")
html_content = fetch_page_content(base_url)
if html_content:
cleaned_content = clean_body_content(html_content)
content_by_url[base_url] = cleaned_content
visited_links.add(base_url)
# Extract and process all internal links
soup = BeautifulSoup(html_content, "html.parser")
links = extract_internal_links(base_url, soup)
for link in links:
if link not in visited_links:
print(f"Scraping link: {link}")
page_content = fetch_page_content(link)
if page_content:
cleaned_content = clean_body_content(page_content)
content_by_url[link] = cleaned_content
visited_links.add(link)
# If the link is a PDF file, extract its content
if link.lower().endswith('.pdf'):
print(f"Extracting PDF content from: {link}")
pdf_content = extract_pdf_text(link)
if pdf_content:
content_by_url[link] = pdf_content
return content_by_url
except Exception as e:
print(f"Error during scraping: {e}")
return {}
def fetch_page_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching {url}: {e}")
return None
def extract_internal_links(base_url, soup):
links = set()
for anchor in soup.find_all("a", href=True):
href = anchor["href"]
full_url = urljoin(base_url, href)
if is_internal_link(base_url, full_url):
links.add(full_url)
return links
def is_internal_link(base_url, link_url):
base_netloc = urlparse(base_url).netloc
link_netloc = urlparse(link_url).netloc
return base_netloc == link_netloc
def extract_pdf_text(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
# Open the PDF from the response content
with BytesIO(response.content) as file:
reader = PdfReader(file)
pdf_text = ""
for page in reader.pages:
pdf_text += page.extract_text()
return pdf_text if pdf_text else None
except requests.exceptions.RequestException as e:
print(f"Error fetching PDF {pdf_url}: {e}")
return None
except Exception as e:
print(f"Error reading PDF {pdf_url}: {e}")
return None
def clean_body_content(html_content):
soup = BeautifulSoup(html_content, "html.parser")
# Remove scripts and styles
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
# Get text and clean up
cleaned_content = soup.get_text(separator="\n")
cleaned_content = "\n".join(
line.strip() for line in cleaned_content.splitlines() if line.strip()
)
return cleaned_content
# if __name__ == "__main__":
# website = [
# #"https://www.rib.gov.rw/index.php?id=371",
# "https://haguruka.org.rw/our-work/"
# ]
# all_content = scrape_websites(website)
# # Temporary list to store (url, content) tuples
# temp_list = []
# # Process and store each URL with its content
# for url, content in all_content.items():
# temp_list.append((url, content))
# processed_texts = []
# # Process each element in the temporary list
# for element in temp_list:
# if isinstance(element, tuple):
# url, content = element # Unpack the tuple
# processed_texts.append(f"url: {url}, content: {content}")
# elif isinstance(element, str):
# processed_texts.append(element)
# else:
# processed_texts.append(str(element))
# def chunk_string(s, chunk_size=2000):
# return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
# # List to store the chunks
# chunked_texts = []
# for text in processed_texts:
# chunked_texts.extend(chunk_string(text))
data = []
data.extend(context_data)
# data.extend([item for item in text_chunks if item not in data])
# data.extend([item for item in chunked_texts if item not in data])
#from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="GBV_set",
embedding_function=embed_model,
)
vectorstore.get().keys()
# add data to vector nstore
vectorstore.add_texts(data)
api= os.environ.get('V1')
from openai import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import gradio as gr
from typing import Iterator
import time
# Refined Template with Emotional Awareness
template = ("""
**Role**: Compassionate Regal Assistance and GBV Support Specialist with Emotional Awareness.
You are a friendly and empathetic chatbot designed to assist users in a conversational and human-like manner. Your goal is to provide accurate, helpful, and emotionally supportive responses based on the provided context: {context}. Follow these guidelines:
1. **Emotional Awareness**
- Acknowledge the user's emotions and respond with empathy.
- Use phrases like "I understand how you feel," "That sounds challenging," or "I'm here to support you."
- If the user expresses negative emotions, offer comfort and reassurance.
2. **Contextual Interaction**
- Begin with a warm and empathetic welcome message.
- Extract precise details from the provided context: {context}.
- Respond directly to the user's question: {question}.\
- Only provide detailed information if user requests it.
- Remember the user's name is {first_name}.
3. **Communication Guidelines**
- Maintain a warm, conversational tone (avoid over-familiarity).
- Use occasional emojis for engagement (e.g., 😊, 🤗, ❤️).
- Provide clear, concise, and emotionally supportive information.
4. **Response Strategies**
- Greet users naturally and ask about their wellbeing (e.g., "Welcome, {first_name}! 😊 How are you feeling today?", "Hello {first_name}! 🤗 What's on your mind?").
- Always start with a check-in about the user's wellbeing or current situation.
- Provide a concise summary with only relevant information.
- Avoid generating content beyond the context.
- Handle missing information transparently.
5. **No Extra Content**
- If no information matches the user's request:
* Respond politely: "I don't have that information at the moment, {first_name}. 😊"
* Offer alternative assistance options.
- Strictly avoid generating unsupported content.
- Prevent information padding or speculation.
6. **Extracting Relevant Links**
- If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
- Example response:
- "Here is the link you requested, [URL]"
7. **Real-Time Awareness**
- Acknowledge the current context when appropriate.
- Stay focused on the user's immediate needs.
**Context:** {context}
**User's Question:** {question}
**Your Response:**
""")
rag_prompt = PromptTemplate.from_template(template)
retriever = vectorstore.as_retriever()
class OpenRouterLLM:
def __init__(self, key: str):
try:
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=key # Corrected from `key=getmod`
)
self.headers = {
"HTTP-Referer": "http://localhost:3000",
"X-Title": "Local Development"
}
except Exception as e:
print(f"Initialization error: {e}")
raise
def stream(self, prompt: str) -> Iterator[str]:
try:
completion = self.client.chat.completions.create(
#model="deepseek/deepseek-r1-distill-llama-70b:free",
model="meta-llama/llama-3.3-70b-instruct:free",
messages=[{"role": "user", "content": prompt}],
stream=True
)
for chunk in completion:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
yield delta.content
except Exception as e:
yield f"Streaming error: {str(e)}"
class UserSession:
def __init__(self):
self.current_user = None
self.welcome_message = None
self.conversation_history = [] # Add conversation history storage
def set_user(self, user_info):
self.current_user = user_info
self.set_welcome_message(user_info.get("Nickname", "Guest"))
# Initialize conversation history with welcome message
welcome = self.get_welcome_message()
#initial_message = (" "
#)
self.conversation_history = [
{"role": "assistant", "content": welcome},
#{"role": "assistant", "content": initial_message}
]
def get_user(self):
return self.current_user
def set_welcome_message(self, Nickname):
self.welcome_message = (
f"<div style='font-size: 24px; font-weight: bold; color: #2E86C1;'>"
f"Welcome {Nickname}! 👋</div>"
f"<div style='font-size: 20px; color: #FFFFFF;'>"
f"We appreciate you reaching out to us. You are in a safe and trusted space designed to support you. "
f"Here, you can find guidance on gender-based violence (GBV) and legal assistance.<br><br>"
f"</div>"
)
def get_welcome_message(self):
return self.welcome_message
def add_to_history(self, role, message):
"""Add a message to the conversation history"""
self.conversation_history.append({"role": role, "content": message})
def get_conversation_history(self):
"""Get the full conversation history"""
return self.conversation_history
def get_formatted_history(self):
"""Get conversation history formatted as a string for the LLM"""
formatted_history = ""
for entry in self.conversation_history:
role = "User" if entry["role"] == "user" else "Assistant"
formatted_history += f"{role}: {entry['content']}\n\n"
return formatted_history
# Initialize session
user_session = UserSession()
# Store user details and handle session
def collect_user_info(Nickname):
if not Nickname:
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
# Store user info for chat session
user_info = {
"Nickname": Nickname,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
# Set user in session
user_session.set_user(user_info)
# Generate welcome message
welcome_message = user_session.get_welcome_message()
# Add initial message to start the conversation
chat_history = add_initial_message([(None, welcome_message)])
# Return welcome message and update UI
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
# Add initial message to start the conversation
def add_initial_message(chatbot):
#initial_message = (" "
# )
return chatbot #+ [(None, initial_message)]
# Create RAG chain with user context and conversation history
def create_rag_chain(retriever, template, api_key):
llm = OpenRouterLLM(api_key)
rag_prompt = PromptTemplate.from_template(template)
def stream_func(input_dict):
# Get context using the retriever's invoke method
context = retriever.invoke(input_dict["question"])
context_str = "\n".join([doc.page_content for doc in context])
# Get user info from the session
user_info = user_session.get_user() or {}
first_name = user_info.get("Nickname", "User")
# Get conversation history
conversation_history = user_session.get_formatted_history()
# Format prompt with user context and conversation history
prompt = rag_prompt.format(
context=context_str,
question=input_dict["question"],
first_name=first_name,
conversation_history=conversation_history
)
# Stream response
return llm.stream(prompt)
return stream_func
def rag_memory_stream(message, history):
# Add user message to history
user_session.add_to_history("user", message)
# Initialize with empty response
partial_text = ""
full_response = ""
# Use the rag_chain with the question
for new_text in rag_chain({"question": message}):
partial_text += new_text
full_response = partial_text
yield partial_text
# After generating the complete response, add it to history
user_session.add_to_history("assistant", full_response)
# Gradio Interface Setup with improved UX
def chatbot_interface():
# Get API key (in a real application, handle this more securely)
api_key = api # This should be properly defined or imported elsewhere
# Update the template to include conversation history
global template
template = """
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV).
Previous conversation:
{conversation_history}
Context information:
{context}
User {first_name} asks: {question}
Respond with empathy, providing support and resources based on the conversation. Keep answers short unless the user asks for more details, while maintaining a warm, supportive tone.
"""
# Create the RAG chain with user context
global rag_chain
rag_chain = create_rag_chain(retriever, template, api_key)
with gr.Blocks(css="""
:root {
--background: #000000;
--text: #FFFFFF;
}
body {
background: var(--background) !important;
color: var(--text) !important;
font-family: 'Inter', system-ui, sans-serif;
margin: 0 !important;
padding: 0 !important;
width: 100vw !important;
height: 100vh !important;
display: flex;
flex-direction: column;
}
.gradio-container {
max-width: 100% !important;
width: 100vw !important;
height: 100vh !important;
margin: 0 !important;
padding: 20px !important;
display: flex;
flex-direction: column;
}
.welcome-box, .chat-container, .gr-textbox, .bot {
background: var(--background) !important;
color: var(--text) !important;
border-radius: 12px !important;
padding: 2rem !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
}
.gr-button-primary {
background: var(--background) !important;
color: var(--text) !important;
padding: 12px 24px !important;
border-radius: 8px !important;
transition: all 0.3s ease !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
.gr-button-primary:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(255, 255, 255, 0.2) !important;
}
footer {
text-align: center !important;
color: var(--text) !important;
opacity: 0.7 !important;
padding: 1rem !important;
font-size: 0.9em !important;
}
.gr-markdown h3 {
color: var(--text) !important;
margin-bottom: 1rem !important;
}
""") as demo:
# User registration section
registration_container = gr.Column(visible=True)
with registration_container:
gr.Markdown("### Your privacy is our concern, please provide your nickname. ")
# with registration_container:
# gr.Markdown(
# "### Your privacy is our concern, please provide your nickname.",
# elem_id="registration-markdown"
# )
with gr.Row():
first_name = gr.Textbox(
label="Nickname",
placeholder="Enter your Nickname",
scale=1
)
with gr.Row():
submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
response_message = gr.Markdown(elem_id="welcome-message")
# Chatbot section (initially hidden)
chatbot_container = gr.Column(visible=False)
with chatbot_container:
chat_interface = gr.ChatInterface(
fn=rag_memory_stream,
title="Chat with GBVR",
fill_height=True
)
# with chatbot_container:
# chat_interface = gr.ChatInterface(
# fn=rag_memory_stream,
# title="Chat with GBVR",
# fill_height=True,
# elem_id="chat-title"
# )
# Footer with version info
gr.Markdown("Ijwi ry'Ubufasha v1.0.0 © 2025", elem_id="footer")
# Handle user registration
submit_btn.click(
collect_user_info,
inputs=[first_name],
outputs=[response_message, chatbot_container, registration_container, chat_interface.chatbot]
)
return demo
# Launch the interface
if __name__ == "__main__":
# Launch the interface
chatbot_interface().launch(share=True)