sahara / src /helper.py
elmadany's picture
Update src/helper.py
1409d6f verified
raw
history blame
17.8 kB
import pandas as pd
from statistics import mean
import pandas as pd
import json
import numpy as np
from statistics import mean
import re
from datasets import load_dataset
import os
from collections import defaultdict
from src.envs import API, SAHARA_DATA, SAHARA_RESULTS
TASKS_LIST={
'xlni':'Cross-Lingual Natural Language Inference',
'lid':'Language Identification',
'news': 'News Classification',
'sentiment':'Sentiment Analysis',
'topic':'Topic Classification',
'mt_eng2xx':'Machine Translation - English to African',
'mt_fra2xx':'Machine Translation - French to African',
'mt_xx2xx':'Machine Translation - African to African',
'paraphrase':'Paraphrase',
'summary':'Summarization',
'title':'Title Generation',
'mmlu':'General Knowledge',
'mgsm':'Mathematical Word Problems',
'belebele':'Reading Comprehension',
'squad_qa':'Context-based Question Answering',
'ner':'Named Entity Recognition',
'phrase':'Phrase Chunking',
'pos':'Part-of-Speech Tagging',
}
CLUSTERS = {
"Text Classification Tasks": [
'xlni', 'lid', 'news', 'sentiment', 'topic',
],
"Text Generation Tasks": [
'mt_eng2xx', 'mt_fra2xx', 'mt_xx2xx', 'paraphrase', 'summary', 'title',
],
"MCCR Tasks": [
'mmlu', 'mgsm', 'belebele', 'squad_qa',
],
"Tokens Level Tasks": [
'ner', 'phrase', 'pos',
],
}
ALL_TASKS = [t for cluster in CLUSTERS.values() for t in cluster]
# This dictionary maps each task ID to its parent cluster name
TASK_TO_CLUSTER_MAP = {
task: cluster_name
for cluster_name, tasks in CLUSTERS.items()
for task in tasks
}
# ===== Authenticate and Load Data From Private HF Repo =====
def load_private_leaderboard_df():
ds = load_dataset(
path=SAHARA_DATA,
name=None,
data_files=SAHARA_RESULTS,
split="train",
download_mode="force_redownload"
)
return ds.to_pandas()
metrics_list={
'bleu_1k':'spBleu<sup>1K</sup>',
'accuracy':'Accuracy',
'f1':'Macro-F1',
'exact_match':'Exact Match',
'rougeL':'RougeL',
}
LANG_ISO2NAME = {
'eng': 'English',
'fra': 'French',
# 'ara': 'Arabic',
'amh': 'Amharic',
'ewe': 'Ewe',
'hau': 'Hausa',
'ibo': 'Igbo',
'kin': 'Kinyarwanda',
'lin': 'Lingala',
'lug': 'Ganda',
'orm': 'Oromo',
'sna': 'Shona',
'sot': 'Southern Sotho',
'swa': 'Swahili', 'swh': 'Swahili',
'twi': 'Twi',
'wol': 'Wolof',
'xho': 'Xhosa',
'yor': 'Yoruba',
'zul': 'Zulu',
'afr': 'Afrikaans',
'run': 'Rundi',
'tir': 'Tigrinya',
'som': 'Somali',
'pcm': 'Nigerian Pidgin',
'teo': 'Teso',
'nyn': 'Nyankore',# (Nyankole)',
'lgg': 'Lugbara',
'bem': 'Bemba',# (Chibemba)',
'tsn': 'Tswana',
'bbj': 'Ghomálá',
'mos': 'Moore',
'bam': 'Bambara',
'fon': 'Fon',
'ach': 'Acholi',
'nso': 'Sepedi',
'tso': 'Tsonga',
'fuv': 'Fulfude Nigeria',
'gaz': 'Oromo', #, West Central',
'kea': 'Kabuverdianu',
'nya': 'Nyanja',
'ssw': 'Swati',
'luo': 'Dholuo',# (Luo)',
'ven': 'Venda',
'kir':"Kirundi",
}
# ===== Build Language Name→ISOs map =====
def build_langname_to_isos(iso2name):
name2isos = defaultdict(set)
for iso, name in iso2name.items():
name2isos[name].add(iso)
return name2isos
def compare_models(model_1_name, model_2_name):
"""
Prepares a DataFrame comparing the performance of two models task-by-task.
"""
if model_1_name == model_2_name:
return pd.DataFrame([{"Info": "Please select two different models to compare."}])
# Get data for each model from the main leaderboard results
df1 = all_df[(all_df['model'] == model_1_name) & (all_df['leaderboard'] == 'main')][['task', 'score', 'metric']].rename(columns={'score': model_1_name})
df2 = all_df[(all_df['model'] == model_2_name) & (all_df['leaderboard'] == 'main')][['task', 'score']].rename(columns={'score': model_2_name})
if df1.empty or df2.empty:
return pd.DataFrame([{"Info": "One or both selected models have no 'main' leaderboard data to compare."}])
# Merge the two dataframes on the task ID
comp_df = pd.merge(df1, df2, on='task', how='outer')
# Add descriptive columns
comp_df['Cluster'] = comp_df['task'].map(TASK_TO_CLUSTER_MAP)
comp_df['Task Name'] = comp_df['task'].map(TASKS_LIST)
comp_df['Metric'] = comp_df['metric'].map(metrics_list)
comp_df.fillna({'Cluster': 'Uncategorized'}, inplace=True)
# Calculate the score difference, ensuring scores are numeric
score1 = pd.to_numeric(comp_df[model_1_name], errors='coerce')
score2 = pd.to_numeric(comp_df[model_2_name], errors='coerce')
comp_df['Difference'] = score1 - score2
# Format the difference column with colors
def format_diff(d):
if pd.isna(d):
return "---"
if d > 0.001: # Model 1 is better
return f"<span style='color:green; font-weight:bold;'>+{d:.2f}</span>"
elif d < -0.001: # Model 2 is better
return f"<span style='color:red; font-weight:bold;'>{d:.2f}</span>"
else:
return f"{d:.2f}"
# Format all score columns
comp_df[model_1_name] = comp_df[model_1_name].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
comp_df[model_2_name] = comp_df[model_2_name].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
comp_df['Difference'] = comp_df['Difference'].apply(format_diff)
# --- MODIFIED: Added 'task' to the list of final columns ---
final_cols = ['Cluster', 'Task Name', 'task', 'Metric', model_1_name, model_2_name, 'Difference']
comp_df = comp_df[final_cols]
comp_df = comp_df.sort_values(by=['Cluster', 'Task Name']).reset_index(drop=True)
# --- NEW: Renamed 'task' column to 'Task ID' for display ---
comp_df.rename(columns={'task': 'Task ID'}, inplace=True)
return comp_df
def get_model_table(model_name):
"""
Generates a performance table for a specific model, showing cluster, task, and score.
The table is sorted by Cluster and then by Task Name.
"""
# Filter for the selected model and only 'main' leaderboard entries
model_df = all_df[(all_df['model'] == model_name) & (all_df['leaderboard'] == 'main')].copy()
if model_df.empty:
return pd.DataFrame([{"Info": f"No 'main' leaderboard data available for the model: {model_name}"}])
# --- NEW: Add the Cluster Name column using the map ---
model_df['Cluster'] = model_df['task'].map(TASK_TO_CLUSTER_MAP)
# Create other descriptive columns
model_df['Task Name'] = model_df['task'].map(TASKS_LIST)
model_df['Metric'] = model_df['metric'].map(metrics_list)
model_df['Score'] = model_df['score'].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
# --- MODIFIED: Select the new 'Cluster' column for the final table ---
table = model_df[['Cluster', 'Task Name', 'task', 'Metric', 'Score']].rename(columns={'task': 'Task ID'})
# --- MODIFIED: Sort by Cluster first, then by Task Name ---
table = table.sort_values(by=['Cluster', 'Task Name']).reset_index(drop=True)
# Handle cases where a task might not be in a cluster
table['Cluster'].fillna('Uncategorized', inplace=True)
return table
def get_task_leaderboard(task_key):
"""
Generates a leaderboard for a specific task, showing model performance across all languages.
"""
# Filter the main DataFrame for the selected task
task_df = all_df[all_df['task'] == task_key].copy()
if task_df.empty:
return pd.DataFrame([{"Info": f"No data available for the task: {TASKS_LIST.get(task_key, task_key)}"}])
# Get the metric for this task to display later
metric_name = metrics_list.get(task_df['metric'].iloc[0], '')
# Create a user-friendly column name for each language/leaderboard
def make_lang_col(row):
lb = row['leaderboard']
if lb == 'main':
# Skip the 'main' leaderboard for task-specific views as it's an aggregate
return None
if '-' in lb:
pair_lang = lb.split('-')
# Handles cases where an ISO code might not be in our map
src_lang = LANG_ISO2NAME.get(pair_lang[0], pair_lang[0])
tgt_lang = LANG_ISO2NAME.get(pair_lang[1], pair_lang[1])
return f"{src_lang} to {tgt_lang}"
else:
return LANG_ISO2NAME.get(lb, lb)
if task_key not in ['lid']:
task_df['lang_col'] = task_df.apply(make_lang_col, axis=1)
task_df.dropna(subset=['lang_col'], inplace=True) # Remove rows where lang_col is None
if task_df.empty:
return pd.DataFrame([{"Info": f"No language-specific data for the task: {TASKS_LIST.get(task_key, task_key)}"}])
# Pivot the table to have models as rows and languages as columns
table = task_df.pivot_table(index='model', columns='lang_col', values='score', aggfunc='mean').reset_index()
else:
table = task_df.pivot_table(index='model', columns='task', values='score', aggfunc='mean').reset_index()
score_cols = [col for col in table.columns if col != 'model']
for col in score_cols:
table[col] = table[col].apply(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
main_score_map = all_df[(all_df['task'] == task_key) & (all_df['leaderboard'] == 'main')].set_index('model')['score']
table.insert(1, 'Task Score', table['model'].map(main_score_map).apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---"))
# Add ranking medals based on the "Task Score"
table = add_medals_to_models(table, score_col="Task Score")
# Rename columns to be more descriptive, including the metric
# rename_cols = {col: f"{col}<br>Metric: {metric_name}" for col in score_cols}
if task_key in ['belebele', 'ner', 'mgsm', 'mmlu']:
# rename_cols = {col: f"<div class='rotate_div'><br>{next(iter(LANGNAME2ISOS.get(col)))}</div>" for col in score_cols}
rename_cols = {col: f"<div class='rotate_div'><br>{col}</div>" for col in score_cols}
else:
rename_cols = {col: f"{col}" for col in score_cols}
table.rename(columns=rename_cols, inplace=True)
return table
def get_task_metric_map(df):
mapping = {}
for _, row in df.iterrows():
mapping[row["task"]] = row["metric"]
return mapping
def cluster_average(row, tasks):
vals = []
for t in tasks:
try:
v = float(row[t])
vals.append(v)
except Exception:
continue
return np.mean(vals) if vals else np.nan
def add_medals_to_models(df, score_col="overall score"):
score_float_col = "__score_float"
df[score_float_col] = df[score_col].apply(lambda x: float(x) if x != "---" else np.nan)
df = df.sort_values(by=score_float_col, ascending=False, kind="mergesort").reset_index(drop=True)
def get_rank_symbols(scores):
unique_scores = sorted(set([s for s in scores if not pd.isna(s)]), reverse=True)
symbols = ["🏆", "🥈", "🥉"]
score_to_symbol = {s: symbols[i] for i, s in enumerate(unique_scores[:3])}
return [score_to_symbol.get(s, "") for s in scores]
df['rank_symbol'] = get_rank_symbols(df[score_float_col].tolist())
df['model'] = df['rank_symbol'] + ' ' + df['model']
df = df.drop(columns=['rank_symbol', score_float_col])
return df
def format_cluster_table(df, cluster_tasks, metric_map):
col_order = ["model"] + cluster_tasks
for t in cluster_tasks:
if t not in df.columns:
df[t] = '---'
df = df[col_order]
for t in cluster_tasks:
df[t] = df[t].apply(lambda x: f"{x:.2f}" if isinstance(x, (int, float, np.integer, np.floating)) else x)
df["Cluster Score"] = df[cluster_tasks].apply(
lambda row: cluster_average(row, cluster_tasks), axis=1
)
df["Cluster Score"] = df["Cluster Score"].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
df = df[["model", "Cluster Score"] + cluster_tasks]
# rename = {t: f"{t}\n{metric_map.get(t, '')}" for t in cluster_tasks}
rename = {t: f"{TASKS_LIST[t]}<br>Metric: {metrics_list[metric_map.get(t, '')]}" for t in cluster_tasks}
df = df.rename(columns=rename)
df = add_medals_to_models(df, score_col="Cluster Score")
return df
def format_main_overall_table(df, metric_map):
main = df.copy()
for cname, tasks in CLUSTERS.items():
main[cname] = main[tasks].apply(lambda row: cluster_average(row, tasks), axis=1)
cluster_cols = list(CLUSTERS.keys())
main["Overall Score"] = main[cluster_cols].apply(
lambda row: np.nanmean([x for x in row if pd.notna(x)]), axis=1
)
for c in cluster_cols + ["Overall Score"]:
main[c] = main[c].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
main = main[["model", "Overall Score"] + cluster_cols]
main = add_medals_to_models(main, score_col="Overall Score")
main.rename(columns={'Overall Score': 'Sahara Score'}, inplace=True)
return main
def load_leaderboards():
df = load_private_leaderboard_df()
metric_map = get_task_metric_map(df)
main_df = df[df['leaderboard'] == 'main'].copy()
if main_df.empty:
cluster_tabs = {c: pd.DataFrame([{"Info": "No data"}]) for c in CLUSTERS}
main_overall_tab = pd.DataFrame([{"Info": "No data"}])
return cluster_tabs, main_overall_tab, [], {}, df, metric_map
main_tasks_df = main_df.pivot_table(index='model', columns='task', values='score').reset_index()
cluster_tabs = {}
for cname, tasks in CLUSTERS.items():
cluster_tabs[cname] = format_cluster_table(main_tasks_df, tasks, metric_map)
for t in ALL_TASKS:
if t not in main_tasks_df.columns:
main_tasks_df[t] = np.nan
main_overall_tab = format_main_overall_table(main_tasks_df, metric_map)
all_langs = sorted([lb for lb in df['leaderboard'].unique() if lb not in ['main']])
return cluster_tabs, main_overall_tab, df, metric_map
def df_to_html(df, col_minwidth=90, col_maxwidth=140, model_col_width=400):
# Remove any column whose name contains "task"
drop_cols = [col for col in df.columns if "task" in col]
df = df.drop(columns=drop_cols, errors="ignore")
df.columns.name = None
html = df.to_html(index=False, escape=False)
return html
cluster_tabs, main_overall_tab, all_df, metric_map = load_leaderboards()
LANGNAME2ISOS = build_langname_to_isos(LANG_ISO2NAME)
#show only African langs
LANG_NAME_LIST = sorted([lang for lang in LANGNAME2ISOS.keys() if lang not in ['eng', 'fra', 'English', 'French']])
# TASK_NAME_LIST = sorted(list(TASKS_LIST.values()))
# Create a list of choices in the format "Task Name (id)"
TASK_NAME_LIST = sorted([f"{name} ({key})" for key, name in TASKS_LIST.items()])
TASK_NAME2KEY = {v: k for k, v in TASKS_LIST.items()}
# Get the list of unique model names for the new dropdown
MODEL_NAME_LIST = sorted(all_df['model'].unique()) if not all_df.empty else []
def get_lang_table(lang_name):
iso_codes = LANGNAME2ISOS.get(lang_name, [])
if not iso_codes:
return pd.DataFrame([{"Info": "No data for this language"}])
# Find all leaderboards containing any ISO in this language group
pattern = re.compile(r"(^|-)(" + "|".join(re.escape(iso) for iso in iso_codes) + r")(-|$)")
matched_langs = [lb for lb in all_df['leaderboard'].unique() if lb not in ['main'] and pattern.search(lb)]
lang_df = all_df[all_df['leaderboard'].isin(matched_langs)].copy()
if lang_df.empty:
return pd.DataFrame([{"Info": "No data for this language"}])
def make_task_col(row):
lb = row['leaderboard']
task = row['task']
metric = row['metric']
if '-' in lb:
pair_lang = lb.split('-')
pair = lb.replace('-', '_')
# return f"{TASKS_LIST[task]}({task}) {LANG_ISO2NAME[pair_lang[0]]} to {LANG_ISO2NAME[pair_lang[1]]} ({pair})\n{metric}"
return f"{TASKS_LIST[task]} <br> {LANG_ISO2NAME[pair_lang[0]]} to {LANG_ISO2NAME[pair_lang[1]]} <br> Metric: {metrics_list[metric]}"
else:
return f"{TASKS_LIST[task]} <br> Metric: {metrics_list[metric]}"
lang_df['task_col'] = lang_df.apply(make_task_col, axis=1)
table = lang_df.pivot_table(index='model', columns='task_col', values='score').reset_index()
score_cols = [col for col in table.columns if col != 'model']
for col in score_cols:
table[col] = table[col].apply(lambda x: f"{x:.2f}" if isinstance(x, (int, float, np.integer, np.floating)) else x)
def avg_score(row):
vals = []
for col in score_cols:
try:
v = float(row[col])
vals.append(v)
except Exception:
continue
return np.mean(vals) if vals else np.nan
table.insert(1, 'Language Score', table.apply(avg_score, axis=1).apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---"))
table['__overall_score_float'] = table['Language Score'].apply(lambda x: float(x) if x != "---" else np.nan)
table = table.sort_values(by='__overall_score_float', ascending=False, kind="mergesort").reset_index(drop=True)
def get_rank_symbols(scores):
unique_scores = sorted(set([s for s in scores if not pd.isna(s)]), reverse=True)
symbols = ["🏆", "🥈", "🥉"]
score_to_symbol = {s: symbols[i] for i, s in enumerate(unique_scores[:3])}
return [score_to_symbol.get(s, "") for s in scores]
table['rank_symbol'] = get_rank_symbols(table['__overall_score_float'].tolist())
table['model'] = table['rank_symbol'] + ' ' + table['model']
table = table.drop(columns=['rank_symbol', '__overall_score_float'])
return table