File size: 11,788 Bytes
6121f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import pandas as pd
from statistics import mean
import pandas as pd
import json
import numpy as np
from statistics import mean
import re
from datasets import load_dataset
import os
from collections import defaultdict
from src.envs import API, SAHARA_DATA, SAHARA_RESULTS
TASKS_LIST={
    'xlni':'Cross-Lingual Natural Language Inference',
    'lid':'Language Identification',
    'news': 'News Classification',
    'sentiment':'Sentiment Analysis',
    'topic':'Topic Classification',
    'mt_eng2xx':'Machine Translation - English to African',
    'mt_fra2xx':'Machine Translation - French to African',
    'mt_xx2xx':'Machine Translation - African to African',
    'paraphrase':'Paraphrase',
    'summary':'Summarization',
    'title':'Title Generation',
    'mmlu':'General Knowledge',
    'mgsm':'Mathematical Word Problems',
    'belebele':'Reading Comprehension',
    'squad_qa':'Context-based Question Answering',
    'ner':'Named Entity Recognition',
    'phrase':'Phrase Chunking',
    'pos':'Part-of-Speech Tagging',
}
CLUSTERS = {
    "Text Classification": [
        'xlni', 'lid', 'news', 'sentiment', 'topic',
    ],
    "Text Generation": [
        'mt_eng2xx', 'mt_fra2xx', 'mt_xx2xx', 'paraphrase', 'summary', 'title',
    ],
    "MCCR": [
        'mmlu', 'mgsm', 'belebele', 'squad_qa',
    ],
    "Tokens": [
        'ner', 'phrase', 'pos',
    ],
}
ALL_TASKS = [t for cluster in CLUSTERS.values() for t in cluster]

# ===== Authenticate and Load Data From Private HF Repo =====

def load_private_leaderboard_df():
    ds = load_dataset(
        path=SAHARA_DATA,
        name=None,
        data_files=SAHARA_RESULTS,
        split="train",
        download_mode="force_redownload"
    )
    return ds.to_pandas()
metrics_list={
    'bleu_1k':'spBleu<sup>1K</sup>',
    'accuracy':'Accuracy',
    'f1':'Macro-F1',
    'exact_match':'Exact Match',
    'rougeL':'RougeL',
}
LANG_ISO2NAME = {
    'eng': 'English',
    'fra': 'French',
    # 'ara': 'Arabic',
    'amh': 'Amharic',
    'ewe': 'Ewe',
    'hau': 'Hausa',
    'ibo': 'Igbo',
    'kin': 'Kinyarwanda',
    'lin': 'Lingala',
    'lug': 'Ganda',
    'orm': 'Oromo',
    'sna': 'Shona',
    'sot': 'Southern Sotho',
    'swa': 'Swahili', 'swh': 'Swahili',
    'twi': 'Twi',
    'wol': 'Wolof',
    'xho': 'Xhosa',
    'yor': 'Yoruba',
    'zul': 'Zulu',
    'afr': 'Afrikaans',
    'run': 'Rundi',
    'tir': 'Tigrinya',
    'som': 'Somali',
    'pcm': 'Nigerian Pidgin',
    'teo': 'Teso',
    'nyn': 'Nyankore/Nyankole',
    'lgg': 'Lugbara',
    'bem': 'Bemba/Chibemba',
    'tsn': 'Tswana',
    'bbj': 'Ghomálá',
    'mos': 'Moore',
    'bam': 'Bambara',
    'fon': 'Fon',
    'ach': 'Acholi',
    'nso': 'Sepedi',
    'tso': 'Tsonga',
    'fuv': 'Fulfude Nigeria',
    'gaz': 'Oromo, West Central',
    'kea': 'Kabuverdianu',
    'nya': 'Nyanja',
    'ssw': 'Swati',
    'luo': 'Dholuo/Luo',
    'ven': 'Venda',
    'kir':"Kirundi",
}

# ===== Build Language Name→ISOs map =====
def build_langname_to_isos(iso2name):
    name2isos = defaultdict(set)
    for iso, name in iso2name.items():
        name2isos[name].add(iso)
    return name2isos

LANGNAME2ISOS = build_langname_to_isos(LANG_ISO2NAME)
#show only African langs
LANG_NAME_LIST = sorted([lang for lang in LANGNAME2ISOS.keys() if lang not in ['eng', 'fra', 'English', 'French']])

def get_task_metric_map(df):
    mapping = {}
    for _, row in df.iterrows():
        mapping[row["task"]] = row["metric"]
    return mapping

def cluster_average(row, tasks):
    vals = []
    for t in tasks:
        try:
            v = float(row[t])
            vals.append(v)
        except Exception:
            continue
    return np.mean(vals) if vals else np.nan

def add_medals_to_models(df, score_col="overall score"):
    score_float_col = "__score_float"
    df[score_float_col] = df[score_col].apply(lambda x: float(x) if x != "---" else np.nan)
    df = df.sort_values(by=score_float_col, ascending=False, kind="mergesort").reset_index(drop=True)
    def get_rank_symbols(scores):
        unique_scores = sorted(set([s for s in scores if not pd.isna(s)]), reverse=True)
        symbols = ["🏆", "🥈", "🥉"]
        score_to_symbol = {s: symbols[i] for i, s in enumerate(unique_scores[:3])}
        return [score_to_symbol.get(s, "") for s in scores]
    df['rank_symbol'] = get_rank_symbols(df[score_float_col].tolist())
    df['model'] = df['rank_symbol'] + ' ' + df['model']
    df = df.drop(columns=['rank_symbol', score_float_col])
    return df

def format_cluster_table(df, cluster_tasks, metric_map):
    col_order = ["model"] + cluster_tasks
    for t in cluster_tasks:
        if t not in df.columns:
            df[t] = '---'
    df = df[col_order]
    for t in cluster_tasks:
        df[t] = df[t].apply(lambda x: f"{x:.2f}" if isinstance(x, (int, float, np.integer, np.floating)) else x)
    df["Cluster Score"] = df[cluster_tasks].apply(
        lambda row: cluster_average(row, cluster_tasks), axis=1
    )
    df["Cluster Score"] = df["Cluster Score"].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
    df = df[["model", "Cluster Score"] + cluster_tasks]
    # rename = {t: f"{t}\n{metric_map.get(t, '')}" for t in cluster_tasks}
    rename = {t: f"{TASKS_LIST[t]}<br>Metric: {metrics_list[metric_map.get(t, '')]}" for t in cluster_tasks}
    df = df.rename(columns=rename)
    df = add_medals_to_models(df, score_col="Cluster Score")
    return df

def format_main_overall_table(df, metric_map):
    main = df.copy()
    for cname, tasks in CLUSTERS.items():
        main[cname] = main[tasks].apply(lambda row: cluster_average(row, tasks), axis=1)
    cluster_cols = list(CLUSTERS.keys())
    main["Overall Score"] = main[cluster_cols].apply(
        lambda row: np.nanmean([x for x in row if pd.notna(x)]), axis=1
    )
    for c in cluster_cols + ["Overall Score"]:
        main[c] = main[c].apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---")
    main = main[["model", "Overall Score"] + cluster_cols]
    main = add_medals_to_models(main, score_col="Overall Score")
    main.rename(columns={'Overall Score': 'Sahara Score'}, inplace=True)
    return main

def load_leaderboards():
    df = load_private_leaderboard_df()
    metric_map = get_task_metric_map(df)
    main_df = df[df['leaderboard'] == 'main'].copy()
    if main_df.empty:
        cluster_tabs = {c: pd.DataFrame([{"Info": "No data"}]) for c in CLUSTERS}
        main_overall_tab = pd.DataFrame([{"Info": "No data"}])
        return cluster_tabs, main_overall_tab, [], {}, df, metric_map
    main_tasks_df = main_df.pivot_table(index='model', columns='task', values='score').reset_index()
    cluster_tabs = {}
    for cname, tasks in CLUSTERS.items():
        cluster_tabs[cname] = format_cluster_table(main_tasks_df, tasks, metric_map)
    for t in ALL_TASKS:
        if t not in main_tasks_df.columns:
            main_tasks_df[t] = np.nan
    main_overall_tab = format_main_overall_table(main_tasks_df, metric_map)
    all_langs = sorted([lb for lb in df['leaderboard'].unique() if lb not in ['main']])
    return cluster_tabs, main_overall_tab, df, metric_map

def df_to_html(df, col_minwidth=90, col_maxwidth=140, model_col_width=400):
    # Remove any column whose name contains "task"
    drop_cols = [col for col in df.columns if "task" in col]
    df = df.drop(columns=drop_cols, errors="ignore")
    df.columns.name = None
    html=""
    # html = f"""
    # <style>
    #     .gradio-container-5-34-1 .prose table {{
    #         border-top: 2px solid #dca02a;
    #         border-bottom: 2px solid #dca02a;
    #         margin-bottom:20px;
    #         margin-left: auto;
    #         margin-right: auto;
    #         width: 100%;
    #         border-collapse: collapse;
    #         table-layout: fixed;
    #     }}
    #     .gradio-container-5-34-1 .prose thead tr {{
    #         background: #fffbe9;
    #         border-bottom: 2px solid #dca02a;
    #     }}
    #     .gradio-container-5-34-1 .prose th {{
    #         color: #7d3561;
    #         font-weight: bold;
    #         font-size: 20px;
    #         background: #fffbe9;
    #         padding: 8px 5px;
    #         vertical-align: middle;
    #         border: 0px solid #e0e0e0;
    #     }}
    #     td {{
    #         font-size: 18px;
    #         padding: 8px 5px;
    #         border: 0px solid #e0e0e0;
    #         vertical-align: middle;
    #     }}
    #     th:first-child, td:first-child {{
    #         min-width: {model_col_width}px !important;
    #         max-width: {model_col_width}px !important;
    #         width: {model_col_width}px !important;
    #         text-align: left !important;
    #     }}
    #     th:not(:first-child), td:not(:first-child) {{
    #         min-width: {col_minwidth}px;
    #         max-width: {col_maxwidth}px;
    #         width: auto;
    #         text-align: center;
    #     }}
    # </style>
    # """
    html += df.to_html(index=False, escape=False)
    return html



cluster_tabs, main_overall_tab, all_df, metric_map = load_leaderboards()

def get_lang_table(lang_name):
    iso_codes = LANGNAME2ISOS.get(lang_name, [])
    if not iso_codes:
        return pd.DataFrame([{"Info": "No data for this language"}])
    # Find all leaderboards containing any ISO in this language group
    pattern = re.compile(r"(^|-)(" + "|".join(re.escape(iso) for iso in iso_codes) + r")(-|$)")
    matched_langs = [lb for lb in all_df['leaderboard'].unique() if lb not in ['main'] and pattern.search(lb)]
    lang_df = all_df[all_df['leaderboard'].isin(matched_langs)].copy()
    if lang_df.empty:
        return pd.DataFrame([{"Info": "No data for this language"}])
    def make_task_col(row):
        lb = row['leaderboard']
        task = row['task']
        metric = row['metric']
        if '-' in lb:
            pair_lang = lb.split('-')
            pair = lb.replace('-', '_')
            # return f"{TASKS_LIST[task]}({task}) {LANG_ISO2NAME[pair_lang[0]]} to {LANG_ISO2NAME[pair_lang[1]]} ({pair})\n{metric}"
            return f"{TASKS_LIST[task]} <br> {LANG_ISO2NAME[pair_lang[0]]} to {LANG_ISO2NAME[pair_lang[1]]} <br> Metric: {metrics_list[metric]}"
        else:
            return f"{TASKS_LIST[task]} <br>  Metric: {metrics_list[metric]}"
    lang_df['task_col'] = lang_df.apply(make_task_col, axis=1)
    table = lang_df.pivot_table(index='model', columns='task_col', values='score').reset_index()
    score_cols = [col for col in table.columns if col != 'model']
    for col in score_cols:
        table[col] = table[col].apply(lambda x: f"{x:.2f}" if isinstance(x, (int, float, np.integer, np.floating)) else x)
    def avg_score(row):
        vals = []
        for col in score_cols:
            try:
                v = float(row[col])
                vals.append(v)
            except Exception:
                continue
        return np.mean(vals) if vals else np.nan
    table.insert(1, 'Language Score', table.apply(avg_score, axis=1).apply(lambda x: f"{x:.2f}" if pd.notna(x) else "---"))
    table['__overall_score_float'] = table['Language Score'].apply(lambda x: float(x) if x != "---" else np.nan)
    table = table.sort_values(by='__overall_score_float', ascending=False, kind="mergesort").reset_index(drop=True)
    def get_rank_symbols(scores):
        unique_scores = sorted(set([s for s in scores if not pd.isna(s)]), reverse=True)
        symbols = ["🏆", "🥈", "🥉"]
        score_to_symbol = {s: symbols[i] for i, s in enumerate(unique_scores[:3])}
        return [score_to_symbol.get(s, "") for s in scores]
    table['rank_symbol'] = get_rank_symbols(table['__overall_score_float'].tolist())
    table['model'] = table['rank_symbol'] + ' ' + table['model']
    table = table.drop(columns=['rank_symbol', '__overall_score_float'])
    return table