# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import os import tempfile import unittest import shutil import numpy as np import torch from torch import nn from scripts.average_checkpoints import average_checkpoints class ModelWithSharedParameter(nn.Module): def __init__(self): super(ModelWithSharedParameter, self).__init__() self.embedding = nn.Embedding(1000, 200) self.FC1 = nn.Linear(200, 200) self.FC2 = nn.Linear(200, 200) # tie weight in FC2 to FC1 self.FC2.weight = nn.Parameter(self.FC1.weight) self.FC2.bias = nn.Parameter(self.FC1.bias) self.relu = nn.ReLU() def forward(self, input): return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input) class TestAverageCheckpoints(unittest.TestCase): def test_average_checkpoints(self): params_0 = collections.OrderedDict( [ ('a', torch.DoubleTensor([100.0])), ('b', torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])), ('c', torch.IntTensor([7, 8, 9])), ] ) params_1 = collections.OrderedDict( [ ('a', torch.DoubleTensor([1.0])), ('b', torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])), ('c', torch.IntTensor([2, 2, 2])), ] ) params_avg = collections.OrderedDict( [ ('a', torch.DoubleTensor([50.5])), ('b', torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])), # We expect truncation for integer division ('c', torch.IntTensor([4, 5, 5])), ] ) fd_0, path_0 = tempfile.mkstemp() fd_1, path_1 = tempfile.mkstemp() torch.save(collections.OrderedDict([('model', params_0)]), path_0) torch.save(collections.OrderedDict([('model', params_1)]), path_1) output = average_checkpoints([path_0, path_1])['model'] os.close(fd_0) os.remove(path_0) os.close(fd_1) os.remove(path_1) for (k_expected, v_expected), (k_out, v_out) in zip( params_avg.items(), output.items()): self.assertEqual( k_expected, k_out, 'Key mismatch - expected {} but found {}. ' '(Expected list of keys: {} vs actual list of keys: {})'.format( k_expected, k_out, params_avg.keys(), output.keys() ) ) np.testing.assert_allclose( v_expected.numpy(), v_out.numpy(), err_msg='Tensor value mismatch for key {}'.format(k_expected) ) def test_average_checkpoints_with_shared_parameters(self): def _construct_model_with_shared_parameters(path, value): m = ModelWithSharedParameter() nn.init.constant_(m.FC1.weight, value) torch.save( {'model': m.state_dict()}, path ) return m tmpdir = tempfile.mkdtemp() paths = [] path = os.path.join(tmpdir, "m1.pt") m1 = _construct_model_with_shared_parameters(path, 1.0) paths.append(path) path = os.path.join(tmpdir, "m2.pt") m2 = _construct_model_with_shared_parameters(path, 2.0) paths.append(path) path = os.path.join(tmpdir, "m3.pt") m3 = _construct_model_with_shared_parameters(path, 3.0) paths.append(path) new_model = average_checkpoints(paths) self.assertTrue( torch.equal( new_model['model']['embedding.weight'], (m1.embedding.weight + m2.embedding.weight + m3.embedding.weight) / 3.0 ) ) self.assertTrue( torch.equal( new_model['model']['FC1.weight'], (m1.FC1.weight + m2.FC1.weight + m3.FC1.weight) / 3.0 ) ) self.assertTrue( torch.equal( new_model['model']['FC2.weight'], (m1.FC2.weight + m2.FC2.weight + m3.FC2.weight) / 3.0 ) ) shutil.rmtree(tmpdir) if __name__ == '__main__': unittest.main()