# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections.abc import Collection from dataclasses import dataclass, field from typing import List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class StepLRScheduleConfig(FairseqDataclass): warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = field( default=II("optimization.lr"), metadata={"help": "max learning rate, must be more than cfg.min_lr"}, ) min_lr: float = field(default=0.0, metadata={"help": "min learning rate"}) lr_deacy_period: int = field(default=25000, metadata={"help": "decay period"}) lr_decay: float = field(default=0.5, metadata={"help": "decay factor"}) @register_lr_scheduler("step", dataclass=StepLRScheduleConfig) class StepLRSchedule(FairseqLRScheduler): """Decay learning rate every k updates by a fixed factor """ def __init__(self, cfg: StepLRScheduleConfig, fairseq_optimizer): super().__init__(cfg, fairseq_optimizer) self.max_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr self.min_lr = cfg.min_lr self.lr_deacy_period = cfg.lr_deacy_period self.lr_decay = cfg.lr_decay self.warmup_updates = cfg.warmup_updates self.warmup_init_lr = ( cfg.warmup_init_lr if cfg.warmup_init_lr >= 0 else self.min_lr ) assert(self.lr_deacy_period > 0) assert(self.lr_decay <= 1) assert(self.min_lr >= 0) assert(self.max_lr > self.min_lr) if cfg.warmup_updates > 0: # linearly warmup for the first cfg.warmup_updates self.warmup_lr_step = ( (self.max_lr - self.warmup_init_lr) / self.warmup_updates ) else: self.warmup_lr_step = 1 # initial learning rate self.lr = self.warmup_init_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates < self.cfg.warmup_updates: self.lr = self.warmup_init_lr + num_updates * self.warmup_lr_step else: curr_updates = num_updates - self.cfg.warmup_updates lr_mult = self.lr_decay ** (curr_updates // self.lr_deacy_period) self.lr = max(self.max_lr * lr_mult, self.min_lr) self.optimizer.set_lr(self.lr) return self.lr