|
from app_utils import * |
|
|
|
|
|
def create_demo_scribble(generation_fn): |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image = gr.Image(label="Control image") |
|
prompt = gr.Textbox(label="Prompt", max_lines=1, |
|
placeholder="Use <i> to represent the images in prompt") |
|
num_input_images = gr.Slider(1, MAX_INPUT_IMAGES, value=DEFAULT_INPUT_IMAGES, step=1, |
|
label="Number of input images:") |
|
input_images = [ |
|
gr.Image(label=f'img{i}', type="pil", visible=True if i < DEFAULT_INPUT_IMAGES else False) |
|
for i in range(MAX_INPUT_IMAGES)] |
|
num_input_images.change(variable_images, num_input_images, input_images) |
|
|
|
seed = gr.Slider(label="Seed", minimum=MIN_SEED, maximum=MAX_SEED, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label='Randomize seed', value=True) |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
num_inference_steps = gr.Slider(label="num_inference_steps", minimum=10, maximum=100, value=50, |
|
step=5) |
|
text_guidance_scale = gr.Slider(1, 15, value=6, step=0.5, label="Text Guidance Scale") |
|
negative_prompt = gr.Textbox(label="Negative Prompt", max_lines=1, |
|
value="") |
|
num_images_per_prompt = gr.Slider(1, MAX_IMAGES_PER_PROMPT, value=DEFAULT_IMAGES_PER_PROMPT, step=1, |
|
label="Number of Images") |
|
image_resolution = gr.Slider(label='Image resolution', minimum=MIN_IMAGE_RESOLUTION, |
|
maximum=MAX_IMAGE_RESOLUTION, value=DEFAULT_IMAGE_RESOLUTION, step=256) |
|
preprocess_resolution = gr.Slider(label='Preprocess resolution', minimum=128, maximum=512, |
|
value=512, step=1) |
|
preprocessor_name = gr.Radio( |
|
label='Preprocessor', |
|
choices=['HED', 'PidiNet', 'None'], |
|
type='value', |
|
value='HED') |
|
|
|
with gr.Column(scale=2): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=2, |
|
height='100%') |
|
ips = [prompt, num_inference_steps, text_guidance_scale, negative_prompt, num_images_per_prompt, image, |
|
image_resolution, preprocess_resolution, preprocessor_name, *input_images] |
|
|
|
prompt.submit( |
|
fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False |
|
).then(fn=generation_fn, inputs=ips, outputs=result_gallery) |
|
|
|
run_button.click( |
|
fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False |
|
).then(fn=generation_fn, inputs=ips, outputs=result_gallery) |
|
|
|
gr.Examples( |
|
examples=controlnet_example, |
|
inputs=[image, prompt, input_images[0], input_images[1]], |
|
cache_examples=False, |
|
examples_per_page=100 |
|
) |
|
|
|
return demo |
|
|