Tzktz's picture
Upload 7664 files
6fc683c verified
import rerank
import argparse
import numpy as np
import random
from examples.noisychannel import rerank_options
from fairseq import options
def random_search(args):
param_values = []
tuneable_parameters = ['lenpen', 'weight1', 'weight2', 'weight3']
initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3]
for i, elem in enumerate(initial_params):
if type(elem) is not list:
initial_params[i] = [elem]
else:
initial_params[i] = elem
tune_parameters = args.tune_param.copy()
for i in range(len(args.tune_param)):
assert args.upper_bound[i] >= args.lower_bound[i]
index = tuneable_parameters.index(args.tune_param[i])
del tuneable_parameters[index]
del initial_params[index]
tune_parameters += tuneable_parameters
param_values += initial_params
random.seed(args.seed)
random_params = np.array([
[random.uniform(args.lower_bound[i], args.upper_bound[i]) for i in range(len(args.tune_param))]
for k in range(args.num_trials)
])
set_params = np.array([
[initial_params[i][0] for i in range(len(tuneable_parameters))]
for k in range(args.num_trials)
])
random_params = np.concatenate((random_params, set_params), 1)
rerank_args = vars(args).copy()
if args.nbest_list:
rerank_args['gen_subset'] = 'test'
else:
rerank_args['gen_subset'] = args.tune_subset
for k in range(len(tune_parameters)):
rerank_args[tune_parameters[k]] = list(random_params[:, k])
if args.share_weights:
k = tune_parameters.index('weight2')
rerank_args['weight3'] = list(random_params[:, k])
rerank_args = argparse.Namespace(**rerank_args)
best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank(rerank_args)
rerank_args = vars(args).copy()
rerank_args['lenpen'] = [best_lenpen]
rerank_args['weight1'] = [best_weight1]
rerank_args['weight2'] = [best_weight2]
rerank_args['weight3'] = [best_weight3]
# write the hypothesis from the valid set from the best trial
if args.gen_subset != "valid":
rerank_args['gen_subset'] = "valid"
rerank_args = argparse.Namespace(**rerank_args)
rerank.rerank(rerank_args)
# test with the best hyperparameters on gen subset
rerank_args = vars(args).copy()
rerank_args['gen_subset'] = args.gen_subset
rerank_args['lenpen'] = [best_lenpen]
rerank_args['weight1'] = [best_weight1]
rerank_args['weight2'] = [best_weight2]
rerank_args['weight3'] = [best_weight3]
rerank_args = argparse.Namespace(**rerank_args)
rerank.rerank(rerank_args)
def cli_main():
parser = rerank_options.get_tuning_parser()
args = options.parse_args_and_arch(parser)
random_search(args)
if __name__ == '__main__':
cli_main()