Spaces:
Sleeping
Sleeping
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import os | |
| import contextlib | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from omegaconf import MISSING, II, open_dict, OmegaConf | |
| import numpy as np | |
| from fairseq.data import ( | |
| ConcatSentencesDataset, | |
| Dictionary, | |
| IdDataset, | |
| NestedDictionaryDataset, | |
| NumelDataset, | |
| NumSamplesDataset, | |
| OffsetTokensDataset, | |
| PrependTokenDataset, | |
| RawLabelDataset, | |
| RightPadDataset, | |
| RollDataset, | |
| SortDataset, | |
| StripTokenDataset, | |
| data_utils, | |
| ) | |
| from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
| from fairseq.tasks import FairseqDataclass, FairseqTask, register_task | |
| from fairseq.dataclass import ChoiceEnum | |
| logger = logging.getLogger(__name__) | |
| SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) | |
| class SentencePredictionConfig(FairseqDataclass): | |
| data: str = field(default=MISSING, metadata={"help": "path to data directory"}) | |
| num_classes: int = field( | |
| default=-1, | |
| metadata={"help": "number of classes or regression targets"}, | |
| ) | |
| init_token: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "add token at the beginning of each batch item"}, | |
| ) | |
| separator_token: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "add separator token between inputs"}, | |
| ) | |
| no_shuffle: bool = field( | |
| default=False, | |
| ) | |
| shorten_method: SHORTEN_METHOD_CHOICES = field( | |
| default="none", | |
| metadata={ | |
| "help": "if not none, shorten sequences that exceed tokens_per_sample" | |
| }, | |
| ) | |
| shorten_data_split_list: str = field( | |
| default="", | |
| metadata={ | |
| "help": "comma-separated list of dataset splits to apply shortening to, " | |
| 'e.g., "train,valid" (default: all dataset splits)' | |
| }, | |
| ) | |
| add_prev_output_tokens: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": "add prev_output_tokens to sample, used for encoder-decoder arch" | |
| }, | |
| ) | |
| max_positions: int = field( | |
| default=512, | |
| metadata={"help": "max tokens per example"}, | |
| ) | |
| regression_target: bool = II("criterion.regression_target") | |
| classification_head_name: str = II("criterion.classification_head_name") | |
| seed: int = II("common.seed") | |
| class SentencePredictionTask(FairseqTask): | |
| """ | |
| Sentence (or sentence pair) prediction (classification or regression) task. | |
| Args: | |
| dictionary (Dictionary): the dictionary for the input of the task | |
| """ | |
| def __init__(self, cfg, data_dictionary, label_dictionary): | |
| super().__init__(cfg) | |
| self.dictionary = data_dictionary | |
| self._label_dictionary = label_dictionary | |
| def load_dictionary(cls, filename): | |
| """Load the dictionary from the filename | |
| Args: | |
| filename (str): the filename | |
| """ | |
| dictionary = Dictionary.load(filename) | |
| dictionary.add_symbol("<mask>") | |
| return dictionary | |
| def setup_task(cls, cfg, **kwargs): | |
| assert cfg.num_classes > 0, "Must set task.num_classes" | |
| # load data dictionary | |
| data_dict = cls.load_dictionary( | |
| os.path.join(cfg.data, "input0", "dict.txt"), | |
| ) | |
| logger.info("[input] dictionary: {} types".format(len(data_dict))) | |
| # load label dictionary | |
| if not cfg.regression_target: | |
| label_dict = cls.load_dictionary( | |
| os.path.join(cfg.data, "label", "dict.txt"), | |
| ) | |
| logger.info("[label] dictionary: {} types".format(len(label_dict))) | |
| else: | |
| label_dict = data_dict | |
| return cls(cfg, data_dict, label_dict) | |
| def load_dataset(self, split, combine=False, **kwargs): | |
| """Load a given dataset split (e.g., train, valid, test).""" | |
| def get_path(key, split): | |
| return os.path.join(self.cfg.data, key, split) | |
| def make_dataset(key, dictionary): | |
| split_path = get_path(key, split) | |
| try: | |
| dataset = data_utils.load_indexed_dataset( | |
| split_path, | |
| dictionary, | |
| combine=combine, | |
| ) | |
| except Exception as e: | |
| if "StorageException: [404] Path not found" in str(e): | |
| logger.warning(f"dataset {e} not found") | |
| dataset = None | |
| else: | |
| raise e | |
| return dataset | |
| input0 = make_dataset("input0", self.source_dictionary) | |
| assert input0 is not None, "could not find dataset: {}".format( | |
| get_path("input0", split) | |
| ) | |
| input1 = make_dataset("input1", self.source_dictionary) | |
| if self.cfg.init_token is not None: | |
| input0 = PrependTokenDataset(input0, self.cfg.init_token) | |
| if input1 is None: | |
| src_tokens = input0 | |
| else: | |
| if self.cfg.separator_token is not None: | |
| input1 = PrependTokenDataset(input1, self.cfg.separator_token) | |
| src_tokens = ConcatSentencesDataset(input0, input1) | |
| with data_utils.numpy_seed(self.cfg.seed): | |
| shuffle = np.random.permutation(len(src_tokens)) | |
| src_tokens = maybe_shorten_dataset( | |
| src_tokens, | |
| split, | |
| self.cfg.shorten_data_split_list, | |
| self.cfg.shorten_method, | |
| self.max_positions(), | |
| self.cfg.seed, | |
| ) | |
| dataset = { | |
| "id": IdDataset(), | |
| "net_input": { | |
| "src_tokens": RightPadDataset( | |
| src_tokens, | |
| pad_idx=self.source_dictionary.pad(), | |
| ), | |
| "src_lengths": NumelDataset(src_tokens, reduce=False), | |
| }, | |
| "nsentences": NumSamplesDataset(), | |
| "ntokens": NumelDataset(src_tokens, reduce=True), | |
| } | |
| if self.cfg.add_prev_output_tokens: | |
| prev_tokens_dataset = RightPadDataset( | |
| RollDataset(src_tokens, 1), | |
| pad_idx=self.dictionary.pad(), | |
| ) | |
| dataset["net_input"].update( | |
| prev_output_tokens=prev_tokens_dataset, | |
| ) | |
| if not self.cfg.regression_target: | |
| label_dataset = make_dataset("label", self.label_dictionary) | |
| if label_dataset is not None: | |
| dataset.update( | |
| target=OffsetTokensDataset( | |
| StripTokenDataset( | |
| label_dataset, | |
| id_to_strip=self.label_dictionary.eos(), | |
| ), | |
| offset=-self.label_dictionary.nspecial, | |
| ) | |
| ) | |
| else: | |
| label_path = "{0}.label".format(get_path("label", split)) | |
| if os.path.exists(label_path): | |
| def parse_regression_target(i, line): | |
| values = line.split() | |
| assert ( | |
| len(values) == self.cfg.num_classes | |
| ), f'expected num_classes={self.cfg.num_classes} regression target values on line {i}, found: "{line}"' | |
| return [float(x) for x in values] | |
| with open(label_path) as h: | |
| dataset.update( | |
| target=RawLabelDataset( | |
| [ | |
| parse_regression_target(i, line.strip()) | |
| for i, line in enumerate(h.readlines()) | |
| ] | |
| ) | |
| ) | |
| nested_dataset = NestedDictionaryDataset( | |
| dataset, | |
| sizes=[src_tokens.sizes], | |
| ) | |
| if self.cfg.no_shuffle: | |
| dataset = nested_dataset | |
| else: | |
| dataset = SortDataset( | |
| nested_dataset, | |
| # shuffle | |
| sort_order=[shuffle], | |
| ) | |
| logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) | |
| self.datasets[split] = dataset | |
| return self.datasets[split] | |
| def build_model(self, cfg): | |
| from fairseq import models | |
| with open_dict(cfg) if OmegaConf.is_config(cfg) else contextlib.ExitStack(): | |
| cfg.max_positions = self.cfg.max_positions | |
| model = models.build_model(cfg, self) | |
| model.register_classification_head( | |
| self.cfg.classification_head_name, | |
| num_classes=self.cfg.num_classes, | |
| ) | |
| return model | |
| def max_positions(self): | |
| return self.cfg.max_positions | |
| def source_dictionary(self): | |
| return self.dictionary | |
| def target_dictionary(self): | |
| return self.dictionary | |
| def label_dictionary(self): | |
| return self._label_dictionary | |