Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch.nn as nn | |
from fairseq.model_parallel.models.transformer import ModelParallelTransformerDecoder | |
from fairseq.models import register_model, register_model_architecture | |
from fairseq.models.transformer_lm import TransformerLanguageModel | |
try: | |
from fairseq.model_parallel.megatron.mpu import VocabParallelEmbedding | |
has_megatron_submodule = True | |
except (ImportError, ModuleNotFoundError): | |
has_megatron_submodule = False | |
DEFAULT_MAX_TARGET_POSITIONS = 1024 | |
class ModelParallelTransformerLanguageModel(TransformerLanguageModel): | |
def add_args(parser): | |
TransformerLanguageModel.add_args(parser) | |
def build_model(cls, args, task): | |
"""Build a new model instance.""" | |
if not has_megatron_submodule: | |
raise ImportError( | |
"\n\nPlease install the megatron submodule:" | |
"\n\n git submodule update --init " | |
"fairseq/model_parallel/megatron" | |
) | |
# make sure all arguments are present in older models | |
base_lm_architecture(args) | |
task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) | |
task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) | |
if args.decoder_layers_to_keep: | |
args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) | |
if getattr(args, "max_target_positions", None) is None: | |
args.max_target_positions = getattr( | |
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS | |
) | |
if args.character_embeddings: | |
raise NotImplementedError( | |
"Character embeddings is not supported for model parallel" | |
) | |
elif args.adaptive_input: | |
raise NotImplementedError( | |
"Adaptive input is not supported for model parallel" | |
) | |
else: | |
embed_tokens = cls.build_embedding( | |
args, task.source_dictionary, args.decoder_input_dim | |
) | |
decoder = ModelParallelTransformerDecoder( | |
args, | |
task.target_dictionary, | |
embed_tokens, | |
no_encoder_attn=True, | |
) | |
return cls(decoder) | |
def add_args(parser): | |
TransformerLanguageModel.add_args(parser) | |
def build_embedding(cls, args, dictionary, embed_dim, path=None): | |
def _vocab_init(tensor, **kwargs): | |
nn.init.normal_(tensor, mean=0, std=embed_dim ** -0.5) | |
nn.init.constant_(tensor[1], 0) | |
embed_tokens = VocabParallelEmbedding( | |
len(dictionary), embed_dim, dictionary.pad(), init_method=_vocab_init | |
) | |
return embed_tokens | |
def base_lm_architecture(args): | |
# backward compatibility for older model checkpoints | |
if hasattr(args, "no_tie_adaptive_proj"): | |
# previous models defined --no-tie-adaptive-proj, so use the existence of | |
# that option to determine if this is an "old" model checkpoint | |
args.no_decoder_final_norm = True # old models always set this to True | |
if args.no_tie_adaptive_proj is False: | |
args.tie_adaptive_proj = True | |
if hasattr(args, "decoder_final_norm"): | |
args.no_decoder_final_norm = not args.decoder_final_norm | |
args.activation_fn = getattr(args, "activation_fn", "relu") | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.0) | |
args.activation_dropout = getattr(args, "activation_dropout", 0.0) | |
args.relu_dropout = getattr(args, "relu_dropout", 0.0) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) | |
args.decoder_output_dim = getattr( | |
args, "decoder_output_dim", args.decoder_embed_dim | |
) | |
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) | |
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) | |
# Model training is not stable without this | |
args.decoder_normalize_before = True | |
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
args.character_embeddings = getattr(args, "character_embeddings", False) | |
args.character_filters = getattr( | |
args, | |
"character_filters", | |
"[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", | |
) | |
args.character_embedding_dim = getattr(args, "character_embedding_dim", 4) | |
args.char_embedder_highway_layers = getattr(args, "char_embedder_highway_layers", 2) | |
args.adaptive_input = getattr(args, "adaptive_input", False) | |
args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) | |
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) | |
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) | |
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) | |
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) | |
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) | |
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) | |
args.layernorm_embedding = getattr(args, "layernorm_embedding", False) | |
args.no_scale_embedding = getattr(args, "no_scale_embedding", False) | |
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0.0) | |
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) | |
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0.0) | |
args.add_bos_token = getattr(args, "add_bos_token", False) | |
def transformer_lm_megatron(args): | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) | |
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 4) | |
args.decoder_layers = getattr(args, "decoder_layers", 72) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.1) | |
args.activation_fn = getattr(args, "activation_fn", "gelu") | |
base_lm_architecture(args) | |
def transformer_lm_megatron_11b(args): | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) | |
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 6) | |
args.decoder_layers = getattr(args, "decoder_layers", 72) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.1) | |
args.activation_fn = getattr(args, "activation_fn", "gelu") | |
base_lm_architecture(args) | |