Spaces:
Sleeping
Sleeping
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Contains a PyTorch definition for Gated Separable 3D network (S3D-G) | |
with a text module for computing joint text-video embedding from raw text | |
and video input. The following code will enable you to load the HowTo100M | |
pretrained S3D Text-Video model from: | |
A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic and A. Zisserman, | |
End-to-End Learning of Visual Representations from Uncurated Instructional Videos. | |
https://arxiv.org/abs/1912.06430. | |
S3D-G was proposed by: | |
S. Xie, C. Sun, J. Huang, Z. Tu and K. Murphy, | |
Rethinking Spatiotemporal Feature Learning For Video Understanding. | |
https://arxiv.org/abs/1712.04851. | |
Tensorflow code: https://github.com/tensorflow/models/blob/master/research/slim/nets/s3dg.py | |
The S3D architecture was slightly modified with a space to depth trick for TPU | |
optimization. | |
""" | |
import torch as th | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import os | |
import numpy as np | |
import re | |
class InceptionBlock(nn.Module): | |
def __init__( | |
self, | |
input_dim, | |
num_outputs_0_0a, | |
num_outputs_1_0a, | |
num_outputs_1_0b, | |
num_outputs_2_0a, | |
num_outputs_2_0b, | |
num_outputs_3_0b, | |
gating=True, | |
): | |
super(InceptionBlock, self).__init__() | |
self.conv_b0 = STConv3D(input_dim, num_outputs_0_0a, [1, 1, 1]) | |
self.conv_b1_a = STConv3D(input_dim, num_outputs_1_0a, [1, 1, 1]) | |
self.conv_b1_b = STConv3D( | |
num_outputs_1_0a, num_outputs_1_0b, [3, 3, 3], padding=1, separable=True | |
) | |
self.conv_b2_a = STConv3D(input_dim, num_outputs_2_0a, [1, 1, 1]) | |
self.conv_b2_b = STConv3D( | |
num_outputs_2_0a, num_outputs_2_0b, [3, 3, 3], padding=1, separable=True | |
) | |
self.maxpool_b3 = th.nn.MaxPool3d((3, 3, 3), stride=1, padding=1) | |
self.conv_b3_b = STConv3D(input_dim, num_outputs_3_0b, [1, 1, 1]) | |
self.gating = gating | |
self.output_dim = ( | |
num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b | |
) | |
if gating: | |
self.gating_b0 = SelfGating(num_outputs_0_0a) | |
self.gating_b1 = SelfGating(num_outputs_1_0b) | |
self.gating_b2 = SelfGating(num_outputs_2_0b) | |
self.gating_b3 = SelfGating(num_outputs_3_0b) | |
def forward(self, input): | |
"""Inception block | |
""" | |
b0 = self.conv_b0(input) | |
b1 = self.conv_b1_a(input) | |
b1 = self.conv_b1_b(b1) | |
b2 = self.conv_b2_a(input) | |
b2 = self.conv_b2_b(b2) | |
b3 = self.maxpool_b3(input) | |
b3 = self.conv_b3_b(b3) | |
if self.gating: | |
b0 = self.gating_b0(b0) | |
b1 = self.gating_b1(b1) | |
b2 = self.gating_b2(b2) | |
b3 = self.gating_b3(b3) | |
return th.cat((b0, b1, b2, b3), dim=1) | |
class SelfGating(nn.Module): | |
def __init__(self, input_dim): | |
super(SelfGating, self).__init__() | |
self.fc = nn.Linear(input_dim, input_dim) | |
def forward(self, input_tensor): | |
"""Feature gating as used in S3D-G. | |
""" | |
spatiotemporal_average = th.mean(input_tensor, dim=[2, 3, 4]) | |
weights = self.fc(spatiotemporal_average) | |
weights = th.sigmoid(weights) | |
return weights[:, :, None, None, None] * input_tensor | |
class STConv3D(nn.Module): | |
def __init__( | |
self, input_dim, output_dim, kernel_size, stride=1, padding=0, separable=False | |
): | |
super(STConv3D, self).__init__() | |
self.separable = separable | |
self.relu = nn.ReLU(inplace=True) | |
assert len(kernel_size) == 3 | |
if separable and kernel_size[0] != 1: | |
spatial_kernel_size = [1, kernel_size[1], kernel_size[2]] | |
temporal_kernel_size = [kernel_size[0], 1, 1] | |
if isinstance(stride, list) and len(stride) == 3: | |
spatial_stride = [1, stride[1], stride[2]] | |
temporal_stride = [stride[0], 1, 1] | |
else: | |
spatial_stride = [1, stride, stride] | |
temporal_stride = [stride, 1, 1] | |
if isinstance(padding, list) and len(padding) == 3: | |
spatial_padding = [0, padding[1], padding[2]] | |
temporal_padding = [padding[0], 0, 0] | |
else: | |
spatial_padding = [0, padding, padding] | |
temporal_padding = [padding, 0, 0] | |
if separable: | |
self.conv1 = nn.Conv3d( | |
input_dim, | |
output_dim, | |
kernel_size=spatial_kernel_size, | |
stride=spatial_stride, | |
padding=spatial_padding, | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm3d(output_dim) | |
self.conv2 = nn.Conv3d( | |
output_dim, | |
output_dim, | |
kernel_size=temporal_kernel_size, | |
stride=temporal_stride, | |
padding=temporal_padding, | |
bias=False, | |
) | |
self.bn2 = nn.BatchNorm3d(output_dim) | |
else: | |
self.conv1 = nn.Conv3d( | |
input_dim, | |
output_dim, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm3d(output_dim) | |
def forward(self, input): | |
out = self.relu(self.bn1(self.conv1(input))) | |
if self.separable: | |
out = self.relu(self.bn2(self.conv2(out))) | |
return out | |
class MaxPool3dTFPadding(th.nn.Module): | |
def __init__(self, kernel_size, stride=None, padding="SAME"): | |
super(MaxPool3dTFPadding, self).__init__() | |
if padding == "SAME": | |
padding_shape = self._get_padding_shape(kernel_size, stride) | |
self.padding_shape = padding_shape | |
self.pad = th.nn.ConstantPad3d(padding_shape, 0) | |
self.pool = th.nn.MaxPool3d(kernel_size, stride, ceil_mode=True) | |
def _get_padding_shape(self, filter_shape, stride): | |
def _pad_top_bottom(filter_dim, stride_val): | |
pad_along = max(filter_dim - stride_val, 0) | |
pad_top = pad_along // 2 | |
pad_bottom = pad_along - pad_top | |
return pad_top, pad_bottom | |
padding_shape = [] | |
for filter_dim, stride_val in zip(filter_shape, stride): | |
pad_top, pad_bottom = _pad_top_bottom(filter_dim, stride_val) | |
padding_shape.append(pad_top) | |
padding_shape.append(pad_bottom) | |
depth_top = padding_shape.pop(0) | |
depth_bottom = padding_shape.pop(0) | |
padding_shape.append(depth_top) | |
padding_shape.append(depth_bottom) | |
return tuple(padding_shape) | |
def forward(self, inp): | |
inp = self.pad(inp) | |
out = self.pool(inp) | |
return out | |
class Sentence_Embedding(nn.Module): | |
def __init__( | |
self, | |
embd_dim, | |
num_embeddings=66250, | |
word_embedding_dim=300, | |
token_to_word_path="dict.npy", | |
max_words=16, | |
output_dim=2048, | |
): | |
super(Sentence_Embedding, self).__init__() | |
self.word_embd = nn.Embedding(num_embeddings, word_embedding_dim) | |
self.fc1 = nn.Linear(word_embedding_dim, output_dim) | |
self.fc2 = nn.Linear(output_dim, embd_dim) | |
self.word_to_token = {} | |
self.max_words = max_words | |
token_to_word = np.load(token_to_word_path) | |
for i, t in enumerate(token_to_word): | |
self.word_to_token[t] = i + 1 | |
def _zero_pad_tensor_token(self, tensor, size): | |
if len(tensor) >= size: | |
return tensor[:size] | |
else: | |
zero = th.zeros(size - len(tensor)).long() | |
return th.cat((tensor, zero), dim=0) | |
def _split_text(self, sentence): | |
w = re.findall(r"[\w']+", str(sentence)) | |
return w | |
def _words_to_token(self, words): | |
words = [ | |
self.word_to_token[word] for word in words if word in self.word_to_token | |
] | |
if words: | |
we = self._zero_pad_tensor_token(th.LongTensor(words), self.max_words) | |
return we | |
else: | |
return th.zeros(self.max_words).long() | |
def _words_to_ids(self, x): | |
split_x = [self._words_to_token(self._split_text(sent.lower())) for sent in x] | |
return th.stack(split_x, dim=0) | |
def forward(self, x): | |
x = self._words_to_ids(x) | |
x = self.word_embd(x) | |
x = F.relu(self.fc1(x)) | |
x = th.max(x, dim=1)[0] | |
x = self.fc2(x) | |
return {'text_embedding': x} | |
class S3D(nn.Module): | |
def __init__(self, dict_path, num_classes=512, gating=True, space_to_depth=True): | |
super(S3D, self).__init__() | |
self.num_classes = num_classes | |
self.gating = gating | |
self.space_to_depth = space_to_depth | |
if space_to_depth: | |
self.conv1 = STConv3D( | |
24, 64, [2, 4, 4], stride=1, padding=(1, 2, 2), separable=False | |
) | |
else: | |
self.conv1 = STConv3D( | |
3, 64, [3, 7, 7], stride=2, padding=(1, 3, 3), separable=False | |
) | |
self.conv_2b = STConv3D(64, 64, [1, 1, 1], separable=False) | |
self.conv_2c = STConv3D(64, 192, [3, 3, 3], padding=1, separable=True) | |
self.gating = SelfGating(192) | |
self.maxpool_2a = MaxPool3dTFPadding( | |
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding="SAME" | |
) | |
self.maxpool_3a = MaxPool3dTFPadding( | |
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding="SAME" | |
) | |
self.mixed_3b = InceptionBlock(192, 64, 96, 128, 16, 32, 32) | |
self.mixed_3c = InceptionBlock( | |
self.mixed_3b.output_dim, 128, 128, 192, 32, 96, 64 | |
) | |
self.maxpool_4a = MaxPool3dTFPadding( | |
kernel_size=(3, 3, 3), stride=(2, 2, 2), padding="SAME" | |
) | |
self.mixed_4b = InceptionBlock( | |
self.mixed_3c.output_dim, 192, 96, 208, 16, 48, 64 | |
) | |
self.mixed_4c = InceptionBlock( | |
self.mixed_4b.output_dim, 160, 112, 224, 24, 64, 64 | |
) | |
self.mixed_4d = InceptionBlock( | |
self.mixed_4c.output_dim, 128, 128, 256, 24, 64, 64 | |
) | |
self.mixed_4e = InceptionBlock( | |
self.mixed_4d.output_dim, 112, 144, 288, 32, 64, 64 | |
) | |
self.mixed_4f = InceptionBlock( | |
self.mixed_4e.output_dim, 256, 160, 320, 32, 128, 128 | |
) | |
self.maxpool_5a = self.maxPool3d_5a_2x2 = MaxPool3dTFPadding( | |
kernel_size=(2, 2, 2), stride=(2, 2, 2), padding="SAME" | |
) | |
self.mixed_5b = InceptionBlock( | |
self.mixed_4f.output_dim, 256, 160, 320, 32, 128, 128 | |
) | |
self.mixed_5c = InceptionBlock( | |
self.mixed_5b.output_dim, 384, 192, 384, 48, 128, 128 | |
) | |
self.fc = nn.Linear(self.mixed_5c.output_dim, num_classes) | |
self.text_module = Sentence_Embedding(num_classes, | |
token_to_word_path=dict_path) | |
def _space_to_depth(self, input): | |
"""3D space to depth trick for TPU optimization. | |
""" | |
B, C, T, H, W = input.shape | |
input = input.view(B, C, T // 2, 2, H // 2, 2, W // 2, 2) | |
input = input.permute(0, 3, 5, 7, 1, 2, 4, 6) | |
input = input.contiguous().view(B, 8 * C, T // 2, H // 2, W // 2) | |
return input | |
def forward(self, inputs): | |
"""Defines the S3DG base architecture.""" | |
if self.space_to_depth: | |
inputs = self._space_to_depth(inputs) | |
net = self.conv1(inputs) | |
if self.space_to_depth: | |
# we need to replicate 'SAME' tensorflow padding | |
net = net[:, :, 1:, 1:, 1:] | |
net = self.maxpool_2a(net) | |
net = self.conv_2b(net) | |
net = self.conv_2c(net) | |
if self.gating: | |
net = self.gating(net) | |
net = self.maxpool_3a(net) | |
net = self.mixed_3b(net) | |
net = self.mixed_3c(net) | |
net = self.maxpool_4a(net) | |
net = self.mixed_4b(net) | |
net = self.mixed_4c(net) | |
net = self.mixed_4d(net) | |
net = self.mixed_4e(net) | |
net = self.mixed_4f(net) | |
net = self.maxpool_5a(net) | |
net = self.mixed_5b(net) | |
net = self.mixed_5c(net) | |
net = th.mean(net, dim=[2, 3, 4]) | |
return {'video_embedding': self.fc(net), 'mixed_5c': net} | |