Tzktz's picture
Upload 7664 files
6fc683c verified
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("dummy_masked_lm")
class DummyMaskedLMTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("--dict-size", default=49995, type=int)
parser.add_argument("--dataset-size", default=100000, type=int)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments "
"per sample for BERT dataset",
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
# add mask token
self.mask_idx = dictionary.add_symbol("<mask>")
dictionary.pad_to_multiple_(8) # often faster if divisible by 8
mask_idx = 0
pad_idx = 1
seq = torch.arange(args.tokens_per_sample) + pad_idx + 1
mask = torch.arange(2, args.tokens_per_sample, 7) # ~15%
src = seq.clone()
src[mask] = mask_idx
tgt = torch.full_like(seq, pad_idx)
tgt[mask] = seq[mask]
self.dummy_src = src
self.dummy_tgt = tgt
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task. """
dictionary = Dictionary()
for i in range(args.dict_size):
dictionary.add_symbol("word{}".format(i))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if self.args.batch_size is not None:
bsz = self.args.batch_size
else:
bsz = max(1, self.args.max_tokens // self.args.tokens_per_sample)
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.args.tokens_per_sample, dtype=torch.long
),
},
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]),
"nsentences": bsz,
"ntokens": bsz * self.args.tokens_per_sample,
},
num_items=self.args.dataset_size,
item_size=self.args.tokens_per_sample,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
class DummyDataset(FairseqDataset):
def __init__(self, batch, num_items, item_size):
super().__init__()
self.batch = batch
self.num_items = num_items
self.item_size = item_size
def __getitem__(self, index):
return index
def __len__(self):
return self.num_items
def collater(self, samples):
return self.batch
@property
def sizes(self):
return np.array([self.item_size] * self.num_items)
def num_tokens(self, index):
return self.item_size
def size(self, index):
return self.item_size
def ordered_indices(self):
return np.arange(self.num_items)
@property
def supports_prefetch(self):
return False