|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
import numpy as np |
|
import torch |
|
from fairseq.data import Dictionary, FairseqDataset |
|
from fairseq.tasks import LegacyFairseqTask, register_task |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@register_task("dummy_masked_lm") |
|
class DummyMaskedLMTask(LegacyFairseqTask): |
|
@staticmethod |
|
def add_args(parser): |
|
"""Add task-specific arguments to the parser.""" |
|
parser.add_argument("--dict-size", default=49995, type=int) |
|
parser.add_argument("--dataset-size", default=100000, type=int) |
|
parser.add_argument( |
|
"--tokens-per-sample", |
|
default=512, |
|
type=int, |
|
help="max number of total tokens over all segments " |
|
"per sample for BERT dataset", |
|
) |
|
|
|
def __init__(self, args, dictionary): |
|
super().__init__(args) |
|
self.dictionary = dictionary |
|
|
|
|
|
self.mask_idx = dictionary.add_symbol("<mask>") |
|
dictionary.pad_to_multiple_(8) |
|
|
|
mask_idx = 0 |
|
pad_idx = 1 |
|
seq = torch.arange(args.tokens_per_sample) + pad_idx + 1 |
|
mask = torch.arange(2, args.tokens_per_sample, 7) |
|
src = seq.clone() |
|
src[mask] = mask_idx |
|
tgt = torch.full_like(seq, pad_idx) |
|
tgt[mask] = seq[mask] |
|
|
|
self.dummy_src = src |
|
self.dummy_tgt = tgt |
|
|
|
@classmethod |
|
def setup_task(cls, args, **kwargs): |
|
"""Setup the task. """ |
|
dictionary = Dictionary() |
|
for i in range(args.dict_size): |
|
dictionary.add_symbol("word{}".format(i)) |
|
logger.info("dictionary: {} types".format(len(dictionary))) |
|
return cls(args, dictionary) |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
"""Load a given dataset split. |
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
""" |
|
if self.args.batch_size is not None: |
|
bsz = self.args.batch_size |
|
else: |
|
bsz = max(1, self.args.max_tokens // self.args.tokens_per_sample) |
|
self.datasets[split] = DummyDataset( |
|
{ |
|
"id": 1, |
|
"net_input": { |
|
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), |
|
"src_lengths": torch.full( |
|
(bsz,), self.args.tokens_per_sample, dtype=torch.long |
|
), |
|
}, |
|
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]), |
|
"nsentences": bsz, |
|
"ntokens": bsz * self.args.tokens_per_sample, |
|
}, |
|
num_items=self.args.dataset_size, |
|
item_size=self.args.tokens_per_sample, |
|
) |
|
|
|
@property |
|
def source_dictionary(self): |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
return self.dictionary |
|
|
|
|
|
class DummyDataset(FairseqDataset): |
|
def __init__(self, batch, num_items, item_size): |
|
super().__init__() |
|
self.batch = batch |
|
self.num_items = num_items |
|
self.item_size = item_size |
|
|
|
def __getitem__(self, index): |
|
return index |
|
|
|
def __len__(self): |
|
return self.num_items |
|
|
|
def collater(self, samples): |
|
return self.batch |
|
|
|
@property |
|
def sizes(self): |
|
return np.array([self.item_size] * self.num_items) |
|
|
|
def num_tokens(self, index): |
|
return self.item_size |
|
|
|
def size(self, index): |
|
return self.item_size |
|
|
|
def ordered_indices(self): |
|
return np.arange(self.num_items) |
|
|
|
@property |
|
def supports_prefetch(self): |
|
return False |
|
|