Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from fairseq import utils | |
from fairseq.iterative_refinement_generator import DecoderOut | |
from fairseq.models import register_model, register_model_architecture | |
from fairseq.models.nat import FairseqNATModel | |
from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
import torch | |
from fairseq.models.nat.nonautoregressive_transformer import NATransformerEncoder, NATransformerDecoder, NATransformerModel | |
import logging | |
import random | |
from contextlib import contextmanager | |
logger = logging.getLogger(__name__) | |
def torch_seed(seed): | |
state = torch.random.get_rng_state() | |
state_cuda = torch.cuda.random.get_rng_state() | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
try: | |
yield | |
finally: | |
torch.random.set_rng_state(state) | |
torch.cuda.random.set_rng_state(state_cuda) | |
class BlockNAT(FairseqNATModel): | |
forward_decoder = NATransformerModel.forward_decoder | |
initialize_output_tokens = NATransformerModel.initialize_output_tokens | |
def __init__(self, args, encoder, decoder): | |
super().__init__(args, encoder, decoder) | |
def add_args(parser): | |
FairseqNATModel.add_args(parser) | |
parser.add_argument( | |
"--src-embedding-copy", | |
action="store_true", | |
help="copy encoder word embeddings as the initial input of the decoder", | |
) | |
def build_encoder(cls, args, tgt_dict, embed_tokens): | |
encoder = NATransformerEncoder(args, tgt_dict, embed_tokens) | |
if getattr(args, "apply_bert_init", False): | |
encoder.apply(init_bert_params) | |
return encoder | |
def build_decoder(cls, args, tgt_dict, embed_tokens): | |
decoder = NATransformerDecoder(args, tgt_dict, embed_tokens) | |
if getattr(args, "apply_bert_init", False): | |
decoder.apply(init_bert_params) | |
return decoder | |
def forward( | |
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, glat=None, **kwargs | |
): | |
# encoding | |
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) | |
nonpad_positions = tgt_tokens.ne(self.pad) | |
mask_positions = prev_output_tokens.eq(self.unk) & nonpad_positions | |
mask_lens = (mask_positions).sum(1) | |
l2r_positions = prev_output_tokens.ne(self.unk) & prev_output_tokens.ne(self.pad) | |
l2r_lens = (l2r_positions).sum(1) | |
rand_seed = random.randint(0, 19260817) | |
glat_info = None | |
if glat and tgt_tokens is not None: | |
with torch.no_grad(): | |
with torch_seed(rand_seed): | |
word_ins_out = self.decoder( | |
normalize=False, | |
prev_output_tokens=prev_output_tokens, | |
encoder_out=encoder_out, | |
) | |
pred_tokens = word_ins_out.argmax(-1) | |
same_num = ((pred_tokens == tgt_tokens) & mask_positions).sum(1) | |
input_mask = torch.ones_like(nonpad_positions) | |
bsz, seq_len = tgt_tokens.size() | |
for li in range(bsz): | |
target_num = (((mask_lens[li] - same_num[li].sum()).float()) * glat['context_p']).long() | |
if target_num > 0: | |
input_mask[li].scatter_(dim=0, index=(torch.randperm(mask_lens[li])[:target_num].cuda() + | |
l2r_lens[li]).cuda(), value=0) | |
input_mask = input_mask.eq(1) | |
tgt_mask = input_mask.masked_fill(~mask_positions, False) | |
glat_prev_output_tokens = prev_output_tokens.masked_fill(~input_mask, 0) + tgt_tokens.masked_fill( | |
input_mask, 0) | |
glat_tgt_tokens = tgt_tokens.masked_fill(~tgt_mask, self.pad) | |
prev_output_tokens, tgt_tokens = glat_prev_output_tokens, glat_tgt_tokens | |
glat_info = { | |
"glat_accu": (same_num.sum() / mask_lens.sum()).item(), | |
"glat_context_p": glat['context_p'], | |
} | |
with torch_seed(rand_seed): | |
word_ins_out = self.decoder( | |
normalize=False, | |
prev_output_tokens=prev_output_tokens, | |
encoder_out=encoder_out, | |
) | |
ret = { | |
"word_ins": { | |
"out": word_ins_out, | |
"tgt": tgt_tokens, | |
"mask": tgt_tokens.ne(self.pad), | |
"ls": self.args.label_smoothing, | |
"nll_loss": True, | |
} | |
} | |
if glat_info is not None: | |
ret.update(glat_info) | |
return ret | |
def base_architecture(args): | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) | |
args.decoder_ffn_embed_dim = getattr( | |
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) | |
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) | |
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.0) | |
args.activation_dropout = getattr(args, "activation_dropout", 0.0) | |
args.activation_fn = getattr(args, "activation_fn", "relu") | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.adaptive_input = getattr(args, "adaptive_input", False) | |
args.apply_bert_init = getattr(args, "apply_bert_init", False) | |
args.decoder_output_dim = getattr( | |
args, "decoder_output_dim", args.decoder_embed_dim | |
) | |
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) | |
# --- special arguments --- | |
args.src_embedding_copy = getattr(args, "src_embedding_copy", False) | |
def block_architecture(args): | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", args.encoder_embed_dim*4) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", args.encoder_embed_dim//64) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) | |
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", args.decoder_embed_dim*4) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", args.decoder_embed_dim//64) | |
base_architecture(args) | |
def base_architecture2(args): | |
base_architecture(args) | |