|
from unilm.dit.object_detection.ditod import add_vit_config |
|
import torch |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import ColorMode, Visualizer |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.engine import DefaultPredictor |
|
import gradio as gr |
|
|
|
cfg = get_cfg() |
|
add_vit_config(cfg) |
|
cfg.merge_from_file("cascade_dit_base.yml") |
|
|
|
cfg.MODEL.WEIGHTS = "publaynet_dit-b_cascade.pth" |
|
|
|
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
predictor = DefaultPredictor(cfg) |
|
|
|
|
|
def analyze_image(img): |
|
md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) |
|
if cfg.DATASETS.TEST[0] == 'icdar2019_test': |
|
md.set(thing_classes=["table"]) |
|
else: |
|
md.set(thing_classes=["text", "title", "list", "table", "figure"]) |
|
|
|
output = predictor(img)["instances"] |
|
v = Visualizer(img[:, :, ::-1], |
|
md, |
|
scale=1.0, |
|
instance_mode=ColorMode.SEGMENTATION) |
|
result = v.draw_instance_predictions(output.to("cpu")) |
|
result_image = result.get_image()[:, :, ::-1] |
|
|
|
return result_image |
|
|
|
|
|
title = " Table Detection with DiT" |
|
css = ".output-image, .input-image, .image-preview {height: 600px !important}" |
|
|
|
iface = gr.Interface( |
|
fn=analyze_image, |
|
inputs=[gr.Image(type="numpy", label="document image")], |
|
outputs=[gr.Image(type="numpy", label="detected tables")], |
|
title=title, |
|
|
|
css=css, |
|
) |
|
iface.launch(debug=True, share=True) |
|
|