File size: 6,014 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Union, Tuple

import torch
import torch.nn.functional as F
from PIL import Image
from torch import Tensor
from torch.nn import Module as _DINOModel
from torchmetrics import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TRANSFORMERS_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
from torchvision import transforms
from torchvision.transforms import Compose as _DINOProcessor
from typing_extensions import Literal

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["DINOScore.plot"]

_DEFAULT_MODEL: str = "dino_vits16"


class DINOScore(Metric):
    r"""Calculates `DINO Score`_ which is a image-to-image similarity metric.

    .. note:: Metric is not scriptable

    Args:
        model_name_or_path: string indicating the version of the DINO model to use. Available models are:

            - `"dino_vits16"`

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ModuleNotFoundError:
            If transformers package is not installed or version is lower than 4.10.0
    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = True
    plot_lower_bound: float = 0.0

    score: Tensor
    n_samples: Tensor
    plot_upper_bound = 100.0

    def __init__(
            self,
            model_name_or_path: Literal[
                "dino_vits16",
            ] = _DEFAULT_MODEL,  # type: ignore[assignment]
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.model, self.processor = self._get_model_and_processor(model_name_or_path)
        self.add_state("score", torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("n_samples", torch.tensor(0, dtype=torch.long), dist_reduce_fx="sum")

    @staticmethod
    def _get_model_and_processor(
            model_name_or_path: Literal[
                "dino_vits16",
            ] = "dino_vits16",
    ) -> Tuple[_DINOModel, _DINOProcessor]:
        if _TRANSFORMERS_AVAILABLE:
            model = torch.hub.load('facebookresearch/dino:main', model_name_or_path)
            processor = transforms.Compose([
                transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
            ])
            return model, processor

        raise ModuleNotFoundError(
            "`dino_score` metric requires `transformers` package be installed."
            " Either install with `pip install transformers>=4.0` or `pip install torchmetrics[multimodal]`."
        )

    @staticmethod
    def _dino_score_update(
            images1: Union[Image.Image, List[Image.Image]],
            images2: Union[Image.Image, List[Image.Image]],
            model: _DINOModel,
            processor: _DINOProcessor,
    ) -> Tuple[Tensor, int]:
        if len(images1) != len(images2):
            raise ValueError(
                f"Expected the number of images to be the same but got {len(images1)} and {len(images2)}"
            )

        device = next(model.parameters()).device

        img1_processed_input = [processor(i) for i in images1]
        img2_processed_input = [processor(i) for i in images2]

        img1_processed_input = torch.stack(img1_processed_input).to(device)
        img2_processed_input = torch.stack(img2_processed_input).to(device)

        img1_features = model(img1_processed_input)
        img2_features = model(img2_processed_input)

        # cosine similarity between feature vectors
        score = 100 * F.cosine_similarity(img1_features, img2_features, dim=-1)
        return score, len(images1)

    def update(self, images1: Union[Image.Image, List[Image.Image]],
               images2: Union[Image.Image, List[Image.Image]]) -> None:
        """Update DINO score on a batch of images and text.

        Args:
            images1: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors
            images2: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors

        Raises:
            ValueError:
                If not all images have format [C, H, W]
            ValueError:
                If the number of images do not match
        """
        score, n_samples = self._dino_score_update(images1, images2, self.model, self.processor)
        self.score += score.sum(0)
        self.n_samples += n_samples

    def compute(self) -> Tensor:
        """Compute accumulated dino score."""
        return torch.max(self.score / self.n_samples, torch.zeros_like(self.score))

    def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed
        """
        return self._plot(val, ax)