File size: 13,980 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Union, Tuple

import torch
from PIL import Image
from torch import Tensor
from torchmetrics import Metric
from torchmetrics.functional.multimodal.clip_score import _get_model_and_processor
from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TRANSFORMERS_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
from typing_extensions import Literal

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["CLIPScore.plot"]

_DEFAULT_MODEL: str = "openai/clip-vit-large-patch14"

if _TRANSFORMERS_AVAILABLE:
    from transformers import CLIPModel as _CLIPModel
    from transformers import CLIPProcessor as _CLIPProcessor


    def _download_clip() -> None:
        _CLIPModel.from_pretrained(_DEFAULT_MODEL)
        _CLIPProcessor.from_pretrained(_DEFAULT_MODEL)


    if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_clip):
        __doctest_skip__ = ["CLIPScore", "CLIPScore.plot"]
else:
    __doctest_skip__ = ["CLIPScore", "CLIPScore.plot"]


class CLIPIScore(Metric):
    r"""Calculates `CLIP Score`_ which is a text-to-image similarity metric.

    CLIP is a reference free metric that can be used to evaluate the correlation between a generated caption for an
    image and the actual content of the image. It has been found to be highly correlated with human judgement. The
    metric is defined as:

    .. math::
        \text{CLIPScore(I, C)} = max(100 * cos(E_I, E_C), 0)

    which corresponds to the cosine similarity between visual CLIP embedding :math:`E_i` for an image :math:`i` and
    textual CLIP embedding :math:`E_C` for an caption :math:`C`. The score is bound between 0 and 100 and the closer
    to 100 the better.

    .. note:: Metric is not scriptable

    Args:
        model_name_or_path: string indicating the version of the CLIP model to use. Available models are:

            - `"openai/clip-vit-base-patch16"`
            - `"openai/clip-vit-base-patch32"`
            - `"openai/clip-vit-large-patch14-336"`
            - `"openai/clip-vit-large-patch14"`

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ModuleNotFoundError:
            If transformers package is not installed or version is lower than 4.10.0

    Example:
        >>> import torch
        >>> _ = torch.manual_seed(42)
        >>> from torchmetrics.multimodal import CLIPScore
        >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
        >>> score = metric(torch.randint(255, (3, 224, 224)), "a photo of a cat")
        >>> print(score.detach())
        tensor(24.7691)
    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = True
    plot_lower_bound: float = 0.0

    score: Tensor
    n_samples: Tensor
    plot_upper_bound = 100.0

    def __init__(
            self,
            model_name_or_path: Literal[
                "openai/clip-vit-base-patch16",
                "openai/clip-vit-base-patch32",
                "openai/clip-vit-large-patch14-336",
                "openai/clip-vit-large-patch14",
            ] = _DEFAULT_MODEL,  # type: ignore[assignment]
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.model, self.processor = _get_model_and_processor(model_name_or_path)
        self.add_state("score", torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("n_samples", torch.tensor(0, dtype=torch.long), dist_reduce_fx="sum")

    @staticmethod
    def _clip_score_update(
            images1: Union[Image.Image, List[Image.Image]],
            images2: Union[Image.Image, List[Image.Image]],
            model: _CLIPModel,
            processor: _CLIPProcessor,
    ) -> Tuple[Tensor, int]:
        if len(images1) != len(images2):
            raise ValueError(
                f"Expected the number of images to be the same but got {len(images1)} and {len(images2)}"
            )

        device = next(model.parameters()).device
        img1_processed_input = processor(images=images1, return_tensors="pt")
        img2_processed_input = processor(images=images2, return_tensors="pt")

        img1_features = model.get_image_features(img1_processed_input["pixel_values"].to(device))
        img1_features = img1_features / img1_features.norm(p=2, dim=-1, keepdim=True)

        img2_features = model.get_image_features(img2_processed_input["pixel_values"].to(device))
        img2_features = img2_features / img2_features.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity between feature vectors
        score = 100 * (img1_features * img2_features).sum(axis=-1)
        return score, len(images1)

    def update(self, images1: Union[Image.Image, List[Image.Image]],
               images2: Union[Image.Image, List[Image.Image]]) -> None:
        """Update CLIP score on a batch of images and text.

        Args:
            images1: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors
            images2: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors

        Raises:
            ValueError:
                If not all images have format [C, H, W]
            ValueError:
                If the number of images do not match
        """
        score, n_samples = self._clip_score_update(images1, images2, self.model, self.processor)
        self.score += score.sum(0)
        self.n_samples += n_samples

    def compute(self) -> Tensor:
        """Compute accumulated clip score."""
        return torch.max(self.score / self.n_samples, torch.zeros_like(self.score))

    def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.multimodal import CLIPScore
            >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
            >>> metric.update(torch.randint(255, (3, 224, 224)), "a photo of a cat")
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.multimodal import CLIPScore
            >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(torch.randint(255, (3, 224, 224)), "a photo of a cat"))
            >>> fig_, ax_ = metric.plot(values)
        """
        return self._plot(val, ax)


class CLIPTScore(Metric):
    r"""Calculates `CLIP Score`_ which is a text-to-image similarity metric.

    CLIP is a reference free metric that can be used to evaluate the correlation between a generated caption for an
    image and the actual content of the image. It has been found to be highly correlated with human judgement. The
    metric is defined as:

    .. math::
        \text{CLIPScore(I, C)} = max(100 * cos(E_I, E_C), 0)

    which corresponds to the cosine similarity between visual CLIP embedding :math:`E_i` for an image :math:`i` and
    textual CLIP embedding :math:`E_C` for an caption :math:`C`. The score is bound between 0 and 100 and the closer
    to 100 the better.

    .. note:: Metric is not scriptable

    Args:
        model_name_or_path: string indicating the version of the CLIP model to use. Available models are:

            - `"openai/clip-vit-base-patch16"`
            - `"openai/clip-vit-base-patch32"`
            - `"openai/clip-vit-large-patch14-336"`
            - `"openai/clip-vit-large-patch14"`

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ModuleNotFoundError:
            If transformers package is not installed or version is lower than 4.10.0

    Example:
        >>> import torch
        >>> _ = torch.manual_seed(42)
        >>> from torchmetrics.multimodal import CLIPScore
        >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
        >>> score = metric(torch.randint(255, (3, 224, 224)), "a photo of a cat")
        >>> print(score.detach())
        tensor(24.7691)
    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = True
    plot_lower_bound: float = 0.0

    score: Tensor
    n_samples: Tensor
    plot_upper_bound = 100.0

    def __init__(
            self,
            model_name_or_path: Literal[
                "openai/clip-vit-base-patch16",
                "openai/clip-vit-base-patch32",
                "openai/clip-vit-large-patch14-336",
                "openai/clip-vit-large-patch14",
            ] = _DEFAULT_MODEL,  # type: ignore[assignment]
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.model, self.processor = _get_model_and_processor(model_name_or_path)
        self.add_state("score", torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("n_samples", torch.tensor(0, dtype=torch.long), dist_reduce_fx="sum")

    @staticmethod
    def _clip_score_update(
            images: Union[Image.Image, List[Image.Image]],
            text: Union[str, List[str]],
            model: _CLIPModel,
            processor: _CLIPProcessor,
    ) -> Tuple[Tensor, int]:
        if len(text) != len(images):
            raise ValueError(
                f"Expected the number of images and text examples to be the same but got {len(images)} and {len(text)}"
            )
        device = next(model.parameters()).device
        processed_input = processor(text=text, images=images, return_tensors="pt", padding=True)

        img_features = model.get_image_features(processed_input["pixel_values"].to(device))
        img_features = img_features / img_features.norm(p=2, dim=-1, keepdim=True)

        txt_features = model.get_text_features(
            processed_input["input_ids"].to(device), processed_input["attention_mask"].to(device)
        )
        txt_features = txt_features / txt_features.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity between feature vectors
        score = 100 * (img_features * txt_features).sum(axis=-1)
        return score, len(text)

    def update(self, images: Union[Image.Image, List[Image.Image]], text: Union[str, List[str]]) -> None:
        """Update CLIP score on a batch of images and text.

        Args:
            images: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors
            text: Either a single caption or a list of captions

        Raises:
            ValueError:
                If not all images have format [C, H, W]
            ValueError:
                If the number of images and captions do not match
        """
        score, n_samples = self._clip_score_update(images, text, self.model, self.processor)
        self.score += score.sum(0)
        self.n_samples += n_samples

    def compute(self) -> Tensor:
        """Compute accumulated clip score."""
        return torch.max(self.score / self.n_samples, torch.zeros_like(self.score))

    def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.multimodal import CLIPScore
            >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
            >>> metric.update(torch.randint(255, (3, 224, 224)), "a photo of a cat")
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.multimodal import CLIPScore
            >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(torch.randint(255, (3, 224, 224)), "a photo of a cat"))
            >>> fig_, ax_ = metric.plot(values)
        """
        return self._plot(val, ax)