Spaces:
Sleeping
Sleeping
File size: 13,980 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Union, Tuple
import torch
from PIL import Image
from torch import Tensor
from torchmetrics import Metric
from torchmetrics.functional.multimodal.clip_score import _get_model_and_processor
from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TRANSFORMERS_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
from typing_extensions import Literal
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["CLIPScore.plot"]
_DEFAULT_MODEL: str = "openai/clip-vit-large-patch14"
if _TRANSFORMERS_AVAILABLE:
from transformers import CLIPModel as _CLIPModel
from transformers import CLIPProcessor as _CLIPProcessor
def _download_clip() -> None:
_CLIPModel.from_pretrained(_DEFAULT_MODEL)
_CLIPProcessor.from_pretrained(_DEFAULT_MODEL)
if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_clip):
__doctest_skip__ = ["CLIPScore", "CLIPScore.plot"]
else:
__doctest_skip__ = ["CLIPScore", "CLIPScore.plot"]
class CLIPIScore(Metric):
r"""Calculates `CLIP Score`_ which is a text-to-image similarity metric.
CLIP is a reference free metric that can be used to evaluate the correlation between a generated caption for an
image and the actual content of the image. It has been found to be highly correlated with human judgement. The
metric is defined as:
.. math::
\text{CLIPScore(I, C)} = max(100 * cos(E_I, E_C), 0)
which corresponds to the cosine similarity between visual CLIP embedding :math:`E_i` for an image :math:`i` and
textual CLIP embedding :math:`E_C` for an caption :math:`C`. The score is bound between 0 and 100 and the closer
to 100 the better.
.. note:: Metric is not scriptable
Args:
model_name_or_path: string indicating the version of the CLIP model to use. Available models are:
- `"openai/clip-vit-base-patch16"`
- `"openai/clip-vit-base-patch32"`
- `"openai/clip-vit-large-patch14-336"`
- `"openai/clip-vit-large-patch14"`
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ModuleNotFoundError:
If transformers package is not installed or version is lower than 4.10.0
Example:
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.multimodal import CLIPScore
>>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
>>> score = metric(torch.randint(255, (3, 224, 224)), "a photo of a cat")
>>> print(score.detach())
tensor(24.7691)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
score: Tensor
n_samples: Tensor
plot_upper_bound = 100.0
def __init__(
self,
model_name_or_path: Literal[
"openai/clip-vit-base-patch16",
"openai/clip-vit-base-patch32",
"openai/clip-vit-large-patch14-336",
"openai/clip-vit-large-patch14",
] = _DEFAULT_MODEL, # type: ignore[assignment]
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.model, self.processor = _get_model_and_processor(model_name_or_path)
self.add_state("score", torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("n_samples", torch.tensor(0, dtype=torch.long), dist_reduce_fx="sum")
@staticmethod
def _clip_score_update(
images1: Union[Image.Image, List[Image.Image]],
images2: Union[Image.Image, List[Image.Image]],
model: _CLIPModel,
processor: _CLIPProcessor,
) -> Tuple[Tensor, int]:
if len(images1) != len(images2):
raise ValueError(
f"Expected the number of images to be the same but got {len(images1)} and {len(images2)}"
)
device = next(model.parameters()).device
img1_processed_input = processor(images=images1, return_tensors="pt")
img2_processed_input = processor(images=images2, return_tensors="pt")
img1_features = model.get_image_features(img1_processed_input["pixel_values"].to(device))
img1_features = img1_features / img1_features.norm(p=2, dim=-1, keepdim=True)
img2_features = model.get_image_features(img2_processed_input["pixel_values"].to(device))
img2_features = img2_features / img2_features.norm(p=2, dim=-1, keepdim=True)
# cosine similarity between feature vectors
score = 100 * (img1_features * img2_features).sum(axis=-1)
return score, len(images1)
def update(self, images1: Union[Image.Image, List[Image.Image]],
images2: Union[Image.Image, List[Image.Image]]) -> None:
"""Update CLIP score on a batch of images and text.
Args:
images1: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors
images2: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors
Raises:
ValueError:
If not all images have format [C, H, W]
ValueError:
If the number of images do not match
"""
score, n_samples = self._clip_score_update(images1, images2, self.model, self.processor)
self.score += score.sum(0)
self.n_samples += n_samples
def compute(self) -> Tensor:
"""Compute accumulated clip score."""
return torch.max(self.score / self.n_samples, torch.zeros_like(self.score))
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.multimodal import CLIPScore
>>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
>>> metric.update(torch.randint(255, (3, 224, 224)), "a photo of a cat")
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.multimodal import CLIPScore
>>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.randint(255, (3, 224, 224)), "a photo of a cat"))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class CLIPTScore(Metric):
r"""Calculates `CLIP Score`_ which is a text-to-image similarity metric.
CLIP is a reference free metric that can be used to evaluate the correlation between a generated caption for an
image and the actual content of the image. It has been found to be highly correlated with human judgement. The
metric is defined as:
.. math::
\text{CLIPScore(I, C)} = max(100 * cos(E_I, E_C), 0)
which corresponds to the cosine similarity between visual CLIP embedding :math:`E_i` for an image :math:`i` and
textual CLIP embedding :math:`E_C` for an caption :math:`C`. The score is bound between 0 and 100 and the closer
to 100 the better.
.. note:: Metric is not scriptable
Args:
model_name_or_path: string indicating the version of the CLIP model to use. Available models are:
- `"openai/clip-vit-base-patch16"`
- `"openai/clip-vit-base-patch32"`
- `"openai/clip-vit-large-patch14-336"`
- `"openai/clip-vit-large-patch14"`
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ModuleNotFoundError:
If transformers package is not installed or version is lower than 4.10.0
Example:
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.multimodal import CLIPScore
>>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
>>> score = metric(torch.randint(255, (3, 224, 224)), "a photo of a cat")
>>> print(score.detach())
tensor(24.7691)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
score: Tensor
n_samples: Tensor
plot_upper_bound = 100.0
def __init__(
self,
model_name_or_path: Literal[
"openai/clip-vit-base-patch16",
"openai/clip-vit-base-patch32",
"openai/clip-vit-large-patch14-336",
"openai/clip-vit-large-patch14",
] = _DEFAULT_MODEL, # type: ignore[assignment]
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.model, self.processor = _get_model_and_processor(model_name_or_path)
self.add_state("score", torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("n_samples", torch.tensor(0, dtype=torch.long), dist_reduce_fx="sum")
@staticmethod
def _clip_score_update(
images: Union[Image.Image, List[Image.Image]],
text: Union[str, List[str]],
model: _CLIPModel,
processor: _CLIPProcessor,
) -> Tuple[Tensor, int]:
if len(text) != len(images):
raise ValueError(
f"Expected the number of images and text examples to be the same but got {len(images)} and {len(text)}"
)
device = next(model.parameters()).device
processed_input = processor(text=text, images=images, return_tensors="pt", padding=True)
img_features = model.get_image_features(processed_input["pixel_values"].to(device))
img_features = img_features / img_features.norm(p=2, dim=-1, keepdim=True)
txt_features = model.get_text_features(
processed_input["input_ids"].to(device), processed_input["attention_mask"].to(device)
)
txt_features = txt_features / txt_features.norm(p=2, dim=-1, keepdim=True)
# cosine similarity between feature vectors
score = 100 * (img_features * txt_features).sum(axis=-1)
return score, len(text)
def update(self, images: Union[Image.Image, List[Image.Image]], text: Union[str, List[str]]) -> None:
"""Update CLIP score on a batch of images and text.
Args:
images: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors
text: Either a single caption or a list of captions
Raises:
ValueError:
If not all images have format [C, H, W]
ValueError:
If the number of images and captions do not match
"""
score, n_samples = self._clip_score_update(images, text, self.model, self.processor)
self.score += score.sum(0)
self.n_samples += n_samples
def compute(self) -> Tensor:
"""Compute accumulated clip score."""
return torch.max(self.score / self.n_samples, torch.zeros_like(self.score))
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.multimodal import CLIPScore
>>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
>>> metric.update(torch.randint(255, (3, 224, 224)), "a photo of a cat")
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.multimodal import CLIPScore
>>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16")
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.randint(255, (3, 224, 224)), "a photo of a cat"))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|