File size: 25,285 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import argparse
import gc
import os

from torchvision.transforms import InterpolationMode

BICUBIC = InterpolationMode.BICUBIC

from tiktoken.core import Encoding
from torchvision.transforms import CenterCrop, Compose, Resize
from diffusers import ControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler, PNDMScheduler, DDIMScheduler

from app_utils import *
from controlnet.preprocessor import ControlNet_Preprocessor
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from unilm.data.vl.openimage_loader import NumpyNormalize


class AppModel:
    def __init__(self, cfg):
        if isinstance(cfg, argparse.Namespace):
            cfg = convert_namespace_to_omegaconf(cfg)
        cfg.model.align = False
        cfg.model.checkpoint_activations = False
        utils.import_user_module(cfg.common)
        task = tasks.setup_task(cfg.task)
        model = task.build_model(cfg.model)
        model.freeze_params(model.parameters())
        model.half()
        model.cuda()
        model.eval()

        self.cfg = cfg
        self.model = model
        self.model_cache = {}
        self.bos_id = task.dictionary.bos()
        self.eos_id = task.dictionary.eos()
        self.boi_id = task.dictionary.index(BOI_SYMBOL)
        self.eoi_id = task.dictionary.index(EOI_SYMBOL)
        self.dictionary = task.dictionary
        self.tokenizer = task.tokenizer
        self.text_transform = self._build_text_transform()
        self.image_transform = self._build_image_transform()
        self.task_name = ""
        self.controlnet = None
        self.controlnet_preprocessor = ControlNet_Preprocessor()

    def _build_image_transform(self):
        preprocess_image = {
            'gpt': Compose([
                Resize(224, interpolation=BICUBIC),
                CenterCrop(224),
                NumpyNormalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
            ]),
            'diff': Compose([
                Resize(512),
                CenterCrop(512),
                NumpyNormalize([0.5], [0.5])
            ])
        }
        return preprocess_image

    def _build_text_transform(self):
        def text_transform(text):
            append_eos = False
            fs_dict = self.dictionary
            if isinstance(self.tokenizer, Encoding):
                words = list(map(str, self.tokenizer.encode(text, allowed_special="all")))
            else:
                words = self.tokenizer.encode(text, out_type=str)
            # ids = [fs_dict.bos_index]
            ids = []
            for i, word in enumerate(words):
                idx = fs_dict.index(word)
                ids.append(idx)
            if append_eos:
                ids.append(fs_dict.eos_index)
            return ids

        return text_transform

    def load_controlnet_weight(self, task_name):
        if task_name == self.task_name:
            return

        torch.cuda.empty_cache()
        gc.collect()
        self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MODEL_IDS[task_name], torch_dtype=torch.float16)
        self.model.freeze_params(self.controlnet.parameters())
        self.controlnet.cuda()
        self.controlnet.eval()
        torch.cuda.empty_cache()
        gc.collect()
        self.task_name = task_name

    def get_available_lora(self):
        # traverse all the available lora in cfg.model.lora_dir in created time order
        if self.cfg.model.lora_dir == '':
            return []
        files = [f for f in os.listdir(self.cfg.model.lora_dir) if
                 os.path.isfile(os.path.join(self.cfg.model.lora_dir, f))]
        files_sorted = sorted(files, key=lambda x: os.path.getctime(os.path.join(self.cfg.model.lora_dir, x)))

        return files_sorted

    def load_lora(self, lora_name):
        if lora_name == 'None':
            if self.cfg.model.lora_name != 'None':
                for _, module in self.model.diffusion_unet.unet.named_modules():
                    if hasattr(module, "set_lora_layer"):
                        module.set_lora_layer(None)
                self.model.diffusion_unet.lora = False
            self.cfg.model.lora_name = 'None'
            return 'None'
        try:
            state_dict, network_alphas = self.model.diffusion_unet.lora_state_dict(
                os.path.join(self.cfg.model.lora_dir, lora_name)
            )

            self.model.diffusion_unet.load_lora_into_unet(
                state_dict, network_alphas=network_alphas, unet=self.model.diffusion_unet.unet, low_cpu_mem_usage=True
            )
            self.model.diffusion_unet.lora = True
            self.cfg.model.lora_name = lora_name
            return lora_name
        except:
            return 'None'

    def set_ckpt_scheduler_fn(self, ckpt, scheduler):
        # reset scheduler if the class is changed
        if scheduler == 'dpms' and not isinstance(self.model.diffusion_unet.scheduler, DPMSolverMultistepScheduler):
            self.model.diffusion_unet.scheduler = DPMSolverMultistepScheduler.from_pretrained(
                self.cfg.model.pretrained_model_name_or_path, subfolder="scheduler", torch_dtype=torch.float16,
                revision="fp16"
            )
        elif scheduler == 'pndm' and not isinstance(self.model.diffusion_unet.scheduler, PNDMScheduler):
            self.model.diffusion_unet.scheduler = PNDMScheduler.from_pretrained(
                self.cfg.model.pretrained_model_name_or_path, subfolder="scheduler", torch_dtype=torch.float16,
                revision="fp16"
            )
        elif scheduler == 'ddim' and not isinstance(self.model.diffusion_unet.scheduler, DDIMScheduler):
            self.model.diffusion_unet.scheduler = DDIMScheduler.from_pretrained(
                self.cfg.model.pretrained_model_name_or_path, subfolder="scheduler", torch_dtype=torch.float16,
                revision="fp16"
            )

        if ckpt != self.cfg.model.pretrained_ckpt_path:
            try:
                if ckpt not in self.model_cache:
                    state = checkpoint_utils.load_checkpoint_to_cpu(ckpt)
                    self.model_cache[ckpt] = state["model"]
                msg = self.model.load_state_dict(self.model_cache[ckpt], strict=False, args=self.cfg.model)
                self.cfg.model.pretrained_ckpt_path = ckpt

            except:
                if ckpt in self.model_cache:
                    del self.model_cache[ckpt]
        exp = self.cfg.model.pretrained_ckpt_path.split('/')[-2]
        pt = self.cfg.model.pretrained_ckpt_path.split('/')[-1].split('.')[0].split('_')[-1]
        return f'exp: {exp} pt: {pt}'

    def kosmosg_preprocess(self, prompt, negative_prompt, *args, single_batch=True):
        img_src_tokens = [im for im in args if im is not None]
        assert len(img_src_tokens) == prompt.count('<i>'), \
            "Number of images in prompt does not match the number of images uploaded"

        gpt_img_src_tokens = [torch.tensor(self.image_transform['gpt'](im)) for im in img_src_tokens]

        src_tokens = [self.bos_id]
        img_gpt_input_mask = [0]

        for i in range(len(img_src_tokens)):
            text_snippet = prompt.split('<i>', 1)[0]
            prompt = prompt.split('<i>', 1)[1]
            text_token = self.text_transform(text_snippet)

            src_tokens.extend(text_token + [self.boi_id] * (self.cfg.task.image_token_length + 1) + [self.eoi_id])
            img_gpt_input_mask.extend([0] * len(text_token) + [0] + [1] * self.cfg.task.image_token_length + [0])

        text_token = self.text_transform(prompt)
        src_tokens.extend(text_token)
        img_gpt_input_mask.extend([0] * len(text_token))

        src_tokens = torch.LongTensor(src_tokens)
        gpt_img_src_tokens = torch.stack(gpt_img_src_tokens).to(torch.float16) \
            if len(gpt_img_src_tokens) > 0 else None
        img_gpt_input_mask = torch.tensor(img_gpt_input_mask, dtype=torch.bool)

        negative_tokens = torch.LongTensor([self.bos_id] + self.text_transform(negative_prompt))

        if single_batch:
            return src_tokens.unsqueeze(0), gpt_img_src_tokens, img_gpt_input_mask.unsqueeze(0), \
                   negative_tokens.unsqueeze(0)
        else:
            return src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens

    @torch.inference_mode()
    def kosmosg_generation(self, prompt, lora_scale, num_inference_steps, text_guidance_scale, negative_prompt,
                           num_images_per_prompt, *args):
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': lora_scale,
        }

        image = self.model.sample(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens, **kwargs)
        return image

    @torch.inference_mode()
    def controlnet_generation_canny(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                    num_images_per_prompt, control_image, image_resolution, low_threshold,
                                    high_threshold, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_canny(control_image, image_resolution, low_threshold,
                                                                      high_threshold)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('Canny')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_mlsd(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                   num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                   value_threshold, distance_threshold, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_mlsd(control_image, image_resolution,
                                                                     preprocess_resolution, value_threshold,
                                                                     distance_threshold)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('MLSD')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_scribble(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                       num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                       preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_scribble(control_image, image_resolution,
                                                                         preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('scribble')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_scribble_interactive(self, prompt, num_inference_steps, text_guidance_scale,
                                                   negative_prompt, num_images_per_prompt, control_image_and_mask,
                                                   image_resolution, *args):
        assert control_image_and_mask is not None, 'Image is required'

        control_image = self.controlnet_preprocessor.preprocess_scribble_interactive(control_image_and_mask,
                                                                                     image_resolution)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('scribble')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_softedge(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                       num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                       preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_softedge(control_image, image_resolution,
                                                                         preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('softedge')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_openpose(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                       num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                       preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_openpose(control_image, image_resolution,
                                                                         preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('Openpose')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_segmentation(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                           num_images_per_prompt, control_image, image_resolution,
                                           preprocess_resolution, preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_segmentation(control_image, image_resolution,
                                                                             preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('segmentation')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_depth(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                    num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                    preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_depth(control_image, image_resolution,
                                                                      preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('depth')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_normal(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                     num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                     preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_normal(control_image, image_resolution,
                                                                       preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('NormalBae')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_lineart(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                      num_images_per_prompt, control_image, image_resolution, preprocess_resolution,
                                      preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_lineart(control_image, image_resolution,
                                                                        preprocess_resolution, preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        if 'anime' in preprocessor_name:
            self.load_controlnet_weight('lineart_anime')
        else:
            self.load_controlnet_weight('lineart')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, **kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_shuffle(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                      num_images_per_prompt, control_image, image_resolution, preprocessor_name, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_shuffle(control_image, image_resolution,
                                                                        preprocessor_name)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('shuffle')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, kwargs)
        return [control_image] + image

    @torch.inference_mode()
    def controlnet_generation_ip2p(self, prompt, num_inference_steps, text_guidance_scale, negative_prompt,
                                   num_images_per_prompt, control_image, image_resolution, *args):
        assert control_image is not None, 'Image is required'
        assert image_resolution <= MAX_IMAGE_RESOLUTION, 'Image resolution is too high'

        control_image = self.controlnet_preprocessor.preprocess_ip2p(control_image, image_resolution)
        src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens = \
            self.kosmosg_preprocess(prompt, negative_prompt, *args)

        self.load_controlnet_weight('ip2p')

        kwargs = {
            'num_inference_steps': num_inference_steps,
            'text_guidance_scale': text_guidance_scale,
            'num_images_per_prompt': num_images_per_prompt,
            'lora_scale': 0.0,
        }

        image = self.model.sample_controlnet(src_tokens, gpt_img_src_tokens, img_gpt_input_mask, negative_tokens,
                                             control_image, self.controlnet, kwargs)
        return [control_image] + image