File size: 22,568 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
from typing import Dict, List, Optional, Tuple

import torch
from fairseq import distributed_utils, utils
from fairseq.distributed import utils as fsdp_wrap
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.transformer import Embedding
from fairseq.modules import PositionalEmbedding
from torch import Tensor

from torchscale.architecture.config import DecoderConfig, EncoderConfig
from torchscale.architecture.encoder import Encoder

from .language_modeling import LMDecoder as MTDecoder

logger = logging.getLogger(__name__)

DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024
DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8)


@register_model("mt")
class TranslationModel(FairseqEncoderDecoderModel):
    def __init__(self, args, encoder, decoder):
        super().__init__(encoder, decoder)
        self.args = args

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--activation-fn',
                            choices=utils.get_available_activation_fns(),
                            help='activation function to use')
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--attention-dropout', type=float, metavar='D',
                            help='dropout probability for attention weights')
        parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
                            help='dropout probability after activation in FFN.')
        parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained encoder embedding')
        parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension')
        parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension for FFN')
        parser.add_argument('--encoder-layers', type=int, metavar='N',
                            help='num encoder layers')
        parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
                            help='num encoder attention heads')
        parser.add_argument('--encoder-normalize-before', action='store_true',
                            help='apply layernorm before each encoder block')
        parser.add_argument('--encoder-learned-pos', action='store_true',
                            help='use learned positional embeddings in the encoder')
        parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained decoder embedding')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension for FFN')
        parser.add_argument('--decoder-layers', type=int, metavar='N',
                            help='num decoder layers')
        parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
                            help='num decoder attention heads')
        parser.add_argument('--decoder-learned-pos', action='store_true',
                            help='use learned positional embeddings in the decoder')
        parser.add_argument('--decoder-normalize-before', action='store_true',
                            help='apply layernorm before each decoder block')
        parser.add_argument('--decoder-output-dim', type=int, metavar='N',
                            help='decoder output dimension (extra linear layer '
                                 'if different from decoder embed dim')
        parser.add_argument('--share-decoder-input-output-embed', action='store_true',
                            help='share decoder input and output embeddings')
        parser.add_argument('--share-all-embeddings', action='store_true',
                            help='share encoder, decoder and output embeddings'
                                 ' (requires shared dictionary and embed dim)')
        parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
                            help='if set, disables positional embeddings (outside self attention)')
        parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
                            help='comma separated list of adaptive softmax cutoff points. '
                                 'Must be used with adaptive_loss criterion'),
        parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
                            help='sets adaptive softmax dropout for the tail projections')
        parser.add_argument('--layernorm-embedding', action='store_true',
                            help='add layernorm to embedding')
        parser.add_argument('--no-scale-embedding', action='store_true',
                            help='if True, dont scale embeddings')
        parser.add_argument('--checkpoint-activations', action='store_true',
                            help='checkpoint activations at each layer, which saves GPU '
                                 'memory usage at the cost of some additional compute')
        parser.add_argument('--offload-activations', action='store_true',
                            help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.')
        # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019)
        parser.add_argument('--no-cross-attention', default=False, action='store_true',
                            help='do not perform cross-attention')
        parser.add_argument('--cross-self-attention', default=False, action='store_true',
                            help='perform cross+self-attention')
        # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
        parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
                            help='LayerDrop probability for encoder')
        parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
                            help='LayerDrop probability for decoder')
        parser.add_argument('--encoder-layers-to-keep', default=None,
                            help='which layers to *keep* when pruning as a comma-separated list')
        parser.add_argument('--decoder-layers-to-keep', default=None,
                            help='which layers to *keep* when pruning as a comma-separated list')
        # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
        parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0,
                            help='iterative PQ quantization noise at training time')
        parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8,
                            help='block size of quantization noise at training time')
        parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0,
                            help='scalar quantization noise and scalar quantization at training time')
        # args for Fully Sharded Data Parallel (FSDP) training
        parser.add_argument(
            '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP,
            help=(
                'minimum number of params for a layer to be wrapped with FSDP() when '
                'training with --ddp-backend=fully_sharded. Smaller values will '
                'improve memory efficiency, but may make torch.distributed '
                'communication less efficient due to smaller input sizes. This option '
                'is set to 0 (i.e., always wrap) when --checkpoint-activations or '
                '--offload-activations are passed.'
            )
        )
        # args for mixture-of-expert layers
        parser.add_argument('--moe-freq', type=int, metavar='D', default=0,
                            help='Frequency at which we insert MoE Transformer layers')
        parser.add_argument('--encoder-moe-freq', type=int, metavar='D', default=0,
                            help='Frequency at which we insert MoE Transformer encoder layers')
        parser.add_argument('--decoder-moe-freq', type=int, metavar='D', default=0,
                            help='Frequency at which we insert MoE Transformer decoder layers')
        parser.add_argument('--moe-expert-count', type=int, metavar='D', default=0,
                            help='Number of experts in each MoE Layer')
        parser.add_argument('--moe-gating-use-fp32', default=False, action='store_true',
                            help="Use FP32 computations in MoE top2 gating function")
        parser.add_argument('--moe-second-expert-policy', type=str, default='sampling',
                            help="policy for second expert, options: all/sampling/random")
        parser.add_argument(
            '--moe-normalize-gate-prob-before-dropping', default=False, action='store_true',
            help=(
                "whether to normalize gate probs before or after dropping experts "
                "for capacity and randomization"
            )
        )
        parser.add_argument('--moe-expert-ffn-dim', type=int, default=0,
                            help="MoE Expert FFN dimension")
        parser.add_argument('--moe-top1-expert', default=False, action='store_true',
                            help="Use top1 gate instead of top2")
        parser.add_argument(
            '--moe-eval-capacity-token-fraction', type=float, default=0.25,
            help=(
                "Fraction of tokens as capacity during validation"
                "if set to negative, use same as training. range: (0.0, 1.0]."
            )
        )
        parser.add_argument('--moe-normalize-expert-grad', type=str, default='world_size',
                            help="Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'")
        parser.add_argument('--use-moe-pad-mask', default=False, action='store_true',
                            help="Don't route padding tokens to any expert")
        parser.add_argument('--use-xmoe', default=False, action='store_true',
                            help="Enable X-Moe")
        parser.add_argument('--freeze-moe', default=False, action='store_true',
                            help="Freeze MoE Params")
        parser.add_argument('--deepnorm', default=False, action='store_true',
                            help="Enable DeepNorm")
        parser.add_argument('--subln', default=False, action='store_true',
                            help="Enable SubLN")
        parser.add_argument('--pretrained-dense-mt-model-path', type=str, default='')
        # args for pseudo-MoE layers
        parser.add_argument('--alternate-ffn-embed-dim', type=int, default=0,
                            help="FFN embed dim of alternate pseudo-MoE blocks")
        parser.add_argument('--rel-pos-buckets', type=int, default=0,
                            help='')
        parser.add_argument('--max-rel-pos', type=int, default=0,
                            help='')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if getattr(args, "max_source_positions", None) is None:
            args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS

        args.ddp_rank = distributed_utils.get_data_parallel_rank()

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

        if args.share_all_embeddings:
            if src_dict != tgt_dict:
                raise ValueError("--share-all-embeddings requires a joined dictionary")
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise ValueError(
                    "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                )
            if args.decoder_embed_path and (
                args.decoder_embed_path != args.encoder_embed_path
            ):
                raise ValueError(
                    "--share-all-embeddings not compatible with --decoder-embed-path"
                )
            encoder_embed_tokens = cls.build_embedding(
                args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = encoder_embed_tokens
            args.share_decoder_input_output_embed = True
        else:
            encoder_embed_tokens = cls.build_embedding(
                args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = cls.build_embedding(
                args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
            )
        if getattr(args, "offload_activations", False):
            args.checkpoint_activations = True  # offloading implies checkpointing

        encoder_embed_positions = (
            PositionalEmbedding(
                args.max_source_positions,
                args.encoder_embed_dim,
                src_dict.pad(),
                learned=args.encoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        decoder_embed_positions = (
            PositionalEmbedding(
                args.max_target_positions,
                args.decoder_embed_dim,
                tgt_dict.pad(),
                learned=args.decoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        if args.share_decoder_input_output_embed:
            output_projection = torch.nn.Linear(
                decoder_embed_tokens.weight.shape[1],
                decoder_embed_tokens.weight.shape[0],
                bias=False,
            )
            output_projection.weight = decoder_embed_tokens.weight
        else:
            output_projection = torch.nn.Linear(
                args.decoder_embed_dim, len(tgt_dict), bias=False
            )
            torch.nn.init.normal_(
                output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5
            )

        encoder = cls.build_encoder(
            args,
            encoder_embed_tokens,
            encoder_embed_positions,
            src_dict,
        )
        decoder = cls.build_decoder(
            args,
            decoder_embed_tokens,
            decoder_embed_positions,
            output_projection,
            tgt_dict,
        )

        if not args.share_all_embeddings:
            min_params_to_wrap = getattr(
                args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP
            )
            # fsdp_wrap is a no-op when --ddp-backend != fully_sharded
            encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap)
            decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap)
        return cls(args, encoder, decoder)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()
        emb = Embedding(num_embeddings, embed_dim, padding_idx)
        # if provided, load from preloaded dictionaries
        if path:
            embed_dict = utils.parse_embedding(path)
            utils.load_embedding(embed_dict, dictionary, emb)
        return emb

    @classmethod
    def build_encoder(cls, args, embed_tokens, embed_positions, dictionary):
        config = EncoderConfig()
        config.override(args)

        return MTEncoder(
            config,
            embed_tokens,
            embed_positions,
            is_encoder_decoder=True,
            dictionary=dictionary,
        )

    @classmethod
    def build_decoder(
        cls, args, embed_tokens, embed_positions, output_projection, dictionary
    ):
        config = DecoderConfig()
        config.override(args)

        return MTDecoder(
            config,
            embed_tokens,
            embed_positions,
            output_projection,
            is_encoder_decoder=True,
            dictionary=dictionary,
        )

    def forward(
        self,
        src_tokens,
        src_lengths,
        prev_output_tokens,
        return_all_hiddens: bool = False,
        features_only: bool = False,
        **kwargs
    ):
        encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens)
        decoder_out = self.decoder(
            prev_output_tokens,
            encoder_out=encoder_out,
            features_only=features_only,
            return_all_hiddens=return_all_hiddens,
        )
        return decoder_out

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)


class MTEncoder(Encoder, FairseqEncoder):
    def forward(self, src_tokens, **kwargs):
        self_attn_padding_mask = src_tokens.eq(self.dictionary.pad())
        return super().forward(
            src_tokens=src_tokens, encoder_padding_mask=self_attn_padding_mask, **kwargs
        )

    def reorder_encoder_out(self, encoder_out, new_order):
        new_encoder_out = encoder_out["encoder_out"].index_select(1, new_order)
        new_encoder_embedding = encoder_out["encoder_embedding"].index_select(
            0, new_order
        )
        new_encoder_padding_mask = encoder_out["encoder_padding_mask"].index_select(
            0, new_order
        )

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
        }

    def max_positions(self):
        return self.embed_positions.max_positions


@register_model_architecture("mt", "mt_base")
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.no_cross_attention = getattr(args, "no_cross_attention", False)
    args.cross_self_attention = getattr(args, "cross_self_attention", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True
    args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
    args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
    args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)
    args.is_moe = getattr(args, "is_moe", False)
    args.selected_expert_count = getattr(args, "selected_expert_count", 2)