File size: 13,887 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
from dataclasses import dataclass, field
from typing import Optional

import torch
from fairseq import distributed_utils, utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
    FairseqIncrementalDecoder,
    FairseqLanguageModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding
from fairseq.modules import PositionalEmbedding
from omegaconf import II

from torchscale.architecture.config import DecoderConfig
from torchscale.architecture.decoder import Decoder

DEFAULT_MAX_TARGET_POSITIONS = 1024
logger = logging.getLogger(__name__)


@dataclass
class LanguageConfig(FairseqDataclass):
    activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
        default="relu", metadata={"help": "activation function to use"}
    )
    dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
    attention_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability for attention weights"}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability after activation in FFN."}
    )
    relu_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability after activation in FFN."}
    )
    decoder_embed_dim: int = field(
        default=512, metadata={"help": "decoder embedding dimension"}
    )
    decoder_output_dim: int = field(
        default=512, metadata={"help": "decoder output dimension"}
    )
    decoder_input_dim: int = field(
        default=512, metadata={"help": "decoder input dimension"}
    )
    decoder_ffn_embed_dim: int = field(
        default=2048, metadata={"help": "decoder embedding dimension for FFN"}
    )
    decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
    decoder_attention_heads: int = field(
        default=8, metadata={"help": "num decoder attention heads"}
    )
    decoder_normalize_before: bool = field(
        default=False, metadata={"help": "apply layernorm before each decoder block"}
    )
    no_token_positional_embeddings: bool = field(
        default=False,
        metadata={
            "help": "if set, disables positional embeddings (outside self attention)"
        },
    )
    share_decoder_input_output_embed: bool = field(
        default=False, metadata={"help": "share decoder input and output embeddings"}
    )
    decoder_learned_pos: bool = field(
        default=False,
        metadata={"help": "use learned positional embeddings in the decoder"},
    )
    layernorm_embedding: bool = field(
        default=False, metadata={"help": "add layernorm to embedding"}
    )
    no_scale_embedding: bool = field(
        default=False, metadata={"help": "if True, dont scale embeddings"}
    )
    checkpoint_activations: bool = field(
        default=False, metadata={"help": "checkpoint activations at each layer"}
    )
    offload_activations: bool = field(
        default=False,
        metadata={"help": "move checkpointed activations to CPU after they are used."},
    )
    # config for Fully Sharded Data Parallel (FSDP) training
    min_params_to_wrap: int = field(
        default=DEFAULT_MIN_PARAMS_TO_WRAP,
        metadata={
            "help": (
                "minimum number of params for a layer to be wrapped with FSDP() when "
                "training with --ddp-backend=fully_sharded. Smaller values will "
                "improve memory efficiency, but may make torch.distributed "
                "communication less efficient due to smaller input sizes. This option "
                "is set to 0 (i.e., always wrap) when --checkpoint-activations or "
                "--offload-activations are passed."
            )
        },
    )
    moe_freq: int = field(
        default=0,
        metadata={"help": "Frequency at which we insert MoE Transformer layers"},
    )
    moe_expert_count: int = field(
        default=0, metadata={"help": "Number of experts in each MoE Layer"}
    )
    moe_gating_use_fp32: bool = field(
        default=False,
        metadata={"help": "Use FP32 computations in MoE top2 gating function"},
    )
    moe_second_expert_policy: str = field(
        default="sampling",
        metadata={"help": "policy for second expert, options: all/sampling/random"},
    )
    moe_normalize_gate_prob_before_dropping: bool = field(
        default=False,
        metadata={
            "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization"
        },
    )
    moe_expert_ffn_dim: Optional[int] = field(
        default=None, metadata={"help": "MoE expert FFN dimension"}
    )
    moe_top1_expert: Optional[bool] = field(
        default=False, metadata={"help": "Use top1 gate instead of top2"}
    )
    moe_eval_capacity_token_fraction: Optional[float] = field(
        default=0.25,
        metadata={
            "help": (
                "Default: 0.25, Fraction of tokens as capacity during validation, "
                "if set to negative, use same as training. range: (0.0, 1.0]."
            )
        },
    )
    moe_normalize_expert_grad: Optional[str] = field(
        default="world_size",
        metadata={
            "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'"
        },
    )
    record_a2a_perf_stats: Optional[bool] = field(
        default=False,
        metadata={"help": "records all to all perf stats during distributed training"},
    )
    dummy_a2a: Optional[bool] = field(
        default=False,
        metadata={
            "help": "By passes all to all during distributed training by returning the input buffer as output"
        },
    )
    moe_batch_prioritized_routing: Optional[bool] = field(
        default=False,
        metadata={
            "help": "if true orders token by the gate prob before capacity dropping."
        },
    )
    use_xmoe: Optional[bool] = field(
        default=False,
    )
    flash_attention: Optional[bool] = field(
        default=False,
    )
    sope_rel_pos: Optional[bool] = field(
        default=False,
        metadata={"help": "use SoPE as the relative position embhedding"},
    )
    scale_length: Optional[int] = field(
        default=2048,
    )

    # options from other parts of the config
    add_bos_token: bool = II("task.add_bos_token")
    tokens_per_sample: int = II("task.tokens_per_sample")
    max_target_positions: Optional[int] = II("task.max_target_positions")
    tpu: bool = II("common.tpu")
    memory_efficient_fp16: bool = II("common.memory_efficient_fp16")
    fp16: bool = II("common.fp16")
    fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads")
    ddp_backend: str = II("distributed_training.ddp_backend")
    world_size: int = II("distributed_training.distributed_world_size")
    distributed_rank: int = II("distributed_training.distributed_rank")
    ddp_rank: int = II("distributed_training.distributed_rank")
    deepnorm: Optional[bool] = field(
        default=False,
    )
    subln: Optional[bool] = field(
        default=False,
    )
    rel_pos_buckets: Optional[int] = field(
        default=0,
    )
    max_rel_pos: Optional[int] = field(
        default=0,
    )


@register_model("lm", dataclass=LanguageConfig)
class LanguageModel(FairseqLanguageModel):
    def __init__(self, args, decoder):
        self.args = args
        super().__init__(decoder)

    @classmethod
    def build_model(cls, args, task):

        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = getattr(
                args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
            )

        embed_tokens = cls.build_embedding(
            args, task.source_dictionary, args.decoder_embed_dim
        )

        embed_positions = (
            PositionalEmbedding(
                args.max_target_positions,
                args.decoder_embed_dim,
                task.dictionary.pad(),
                learned=args.decoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        if args.share_decoder_input_output_embed:
            output_projection = torch.nn.Linear(
                embed_tokens.weight.shape[1],
                embed_tokens.weight.shape[0],
                bias=False,
            )
            output_projection.weight = embed_tokens.weight
        else:
            output_projection = torch.nn.Linear(
                args.decoder_embed_dim, len(task.dictionary), bias=False
            )
            torch.nn.init.normal_(
                output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5
            )

        if getattr(args, "moe_freq", 0) > 0 and (
            getattr(args, "fp16", False)
            and not getattr(args, "memory_efficient_fp16", False)
            and getattr(args, "ddp_backend", None) != "fully_sharded"
        ):
            assert (
                args.fp16_no_flatten_grads
            ), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm"

        args.ddp_rank = distributed_utils.get_data_parallel_rank()

        config = DecoderConfig()
        config.override(args)

        decoder = LMDecoder(
            config,
            embed_tokens,
            embed_positions,
            output_projection,
            is_encoder_decoder=False,
            dictionary=task.dictionary,
        )

        return cls(args, decoder)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        return Embedding(len(dictionary), embed_dim, dictionary.pad())


class LMDecoder(Decoder, FairseqIncrementalDecoder):
    def forward(self, src_tokens, **kwargs):
        self_attn_padding_mask = src_tokens.eq(self.dictionary.pad())
        return super().forward(src_tokens, self_attn_padding_mask, **kwargs)

    def max_positions(self):
        return self.embed_positions.max_positions

    def reorder_incremental_state_scripting(
        self,
        incremental_state,
        new_order,
    ):
        for module in incremental_state:
            for key in incremental_state[module]:
                result = incremental_state[module][key].index_select(0, new_order)
                incremental_state[module][key] = result


@register_model_architecture("lm", "lm_base")
def base_lm_architecture(args):
    # backward compatibility for older model checkpoints
    if hasattr(args, "no_tie_adaptive_proj"):
        # previous models defined --no-tie-adaptive-proj, so use the existence of
        # that option to determine if this is an "old" model checkpoint
        args.no_decoder_final_norm = True  # old models always set this to True
        if args.no_tie_adaptive_proj is False:
            args.tie_adaptive_proj = True
    if hasattr(args, "decoder_final_norm"):
        args.no_decoder_final_norm = not args.decoder_final_norm

    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)

    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.activation_fn = getattr(args, "activation_fn", "relu")

    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)

    args.base_layers = getattr(args, "base_layers", 0)
    args.base_sublayers = getattr(args, "base_sublayers", 1)
    args.base_shuffle = getattr(args, "base_shuffle", False)

    args.add_bos_token = getattr(args, "add_bos_token", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.character_embeddings = getattr(args, "character_embeddings", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    # Model training is not stable without this
    args.decoder_normalize_before = True
    args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False)

    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
    args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)

    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True