File size: 18,035 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate raw text with a trained model. Batches data on-the-fly.
"""
import sys
sys.path.append( '.' )

import unilm

import ast
import fileinput
import logging
import math
import os
import sys
import time
import re
from argparse import Namespace
from collections import namedtuple

import numpy as np
import torch

from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output

import sentencepiece as spm
from torchvision import transforms
from PIL import Image

# This is simple maximum entropy normalization performed in Inception paper
inception_normalize = transforms.Compose(
    [transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])]
)

def square_transform(size=224):
    return transforms.Compose(
        [
            transforms.Resize((size, size), interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            inception_normalize,
        ]
    )
    
def split_string(string, separators):
    """
    Function to split a given string based on a list of separators.

    Args:
    string (str): The input string to be split.
    separators (list): A list of separators to be used for splitting the string.

    Returns:
    A list containing the split string with separators included.
    """
    pattern = "|".join(re.escape(separator) for separator in separators) 
    result = re.split(f'({pattern})', string)  
    return [elem for elem in result if elem] 

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.interactive")


Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints img_src_tokens img_gpt_input_mask")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")

def buffered_read(input, buffer_size):
    buffer = []
    with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h:
        for src_str in h:
            buffer.append(src_str.strip())
            if len(buffer) >= buffer_size:
                yield buffer
                buffer = []

    if len(buffer) > 0:
        yield buffer


def get_interactive_tokens_and_lengths(self, lines, encode_fn, tokenizer=None):
    """
    line format: [image]path<tab>text<tab>[image]path
    model input: `<s> <image> image hidden </image> My cat looking very dignified.</s>`
    """
    image_feature_length = self.args.image_feature_length
    bos_id = self.dictionary.bos()
    eos_id = self.dictionary.eos()
    boi_id = self.dictionary.index("<image>")
    eoi_id = self.dictionary.index("</image>")
    
    def convert_one_line(input_str):
        # TODO: input interleave image and text
        token = []
        img_src_token = []
        img_gpt_input_mask = []
        segments = input_str.split('<tab>')
        token.append(bos_id)
        img_gpt_input_mask.append(0)
        for i, segment in enumerate(segments):
            if segment.startswith('[image]'):
                image_path = segment[7:]
                # read image and transform to tensor
                image = Image.open(image_path).convert("RGB")
                image_tensor = square_transform(self.args.input_resolution)(image)
                img_src_token.append(image_tensor)
                # token.extend([boi_id] + [boi_id] * image_feature_length + [eoi_id])
                token.extend([boi_id] + list(range(4, image_feature_length+4)) + [eoi_id])
                
                img_gpt_input_mask.extend([0] + [1] * image_feature_length + [0])
            else:
                special_tokens = [self.source_dictionary[idx] for idx in range(tokenizer.vocab_size(), 
                                                                               len(self.source_dictionary))]
                split_special_token_words = []
                split_resutls = split_string(segment, special_tokens)
                for string in split_resutls:
                    if string in special_tokens:
                        split_special_token_words.append(string)
                    else:
                        encode_tokens = tokenizer.encode(string, out_type=str)
                        split_special_token_words.extend(encode_tokens)
                segment = ' '.join(split_special_token_words)
                
                text_tokens = self.source_dictionary.encode_line(
                    encode_fn(segment), add_if_not_exist=False
                ).tolist()
                
                text_tokens = text_tokens[:-1] # </s> in token
                token.extend(text_tokens)
                img_gpt_input_mask.extend([0] * (len(text_tokens))) # </s> in token
        token.append(eos_id)
        # img_gpt_input_mask = img_gpt_input_mask[:-1]
        assert len(token) == len(img_gpt_input_mask) + 1 
        token = torch.LongTensor(token)
        img_gpt_input_mask = torch.LongTensor(img_gpt_input_mask)
        img_src_token = torch.stack(img_src_token, dim=0)
        return token, img_src_token, img_gpt_input_mask
    
    tokens = []
    img_src_tokens = []
    img_gpt_input_masks = []
    for src_str in lines:
        token, img_src_token, img_gpt_input_mask = convert_one_line(src_str)
        tokens.append(token)
        img_src_tokens.append(img_src_token)
        img_gpt_input_masks.append(img_gpt_input_mask)
    lengths = [t.numel() for t in tokens]
    
    return tokens, lengths, img_src_tokens, img_gpt_input_masks


def make_batches(lines, cfg, task, max_positions, encode_fn):
    def encode_fn_target(x):
        return encode_fn(x)

    if cfg.generation.constraints:
        # Strip (tab-delimited) contraints, if present, from input lines,
        # store them in batch_constraints
        batch_constraints = [list() for _ in lines]
        for i, line in enumerate(lines):
            if "\t" in line:
                lines[i], *batch_constraints[i] = line.split("\t")

        # Convert each List[str] to List[Tensor]
        for i, constraint_list in enumerate(batch_constraints):
            batch_constraints[i] = [
                task.target_dictionary.encode_line(
                    encode_fn_target(constraint),
                    append_eos=False,
                    add_if_not_exist=False,
                )
                for constraint in constraint_list
            ]

    if cfg.generation.constraints:
        constraints_tensor = pack_constraints(batch_constraints)
    else:
        constraints_tensor = None

    tokenizer = spm.SentencePieceProcessor()
    if os.path.exists('data/sentencepiece.bpe.model'):
        tokenizer.Load('data/sentencepiece.bpe.model')
    else:
        tokenizer = None
    tokens, lengths, img_src_tokens, img_gpt_input_mask = get_interactive_tokens_and_lengths(task, lines, encode_fn, tokenizer)

    itr = task.get_batch_iterator(
        dataset=task.build_dataset_for_caption_inference(
            tokens, lengths, img_src_tokens, img_gpt_input_mask, constraints=constraints_tensor
        ),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=max_positions,
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
    ).next_epoch_itr(shuffle=False)
    for batch in itr:
        ids = batch["id"]
        src_tokens = batch["net_input"]["src_tokens"]
        src_lengths = batch["net_input"]["src_lengths"]
        img_src_tokens = batch["net_input"]["img_src_tokens"]
        img_gpt_input_mask = batch["net_input"]["img_gpt_input_mask"]
        constraints = batch.get("constraints", None)

        yield Batch(
            ids=ids,
            src_tokens=src_tokens,
            src_lengths=src_lengths,
            img_src_tokens=img_src_tokens,
            img_gpt_input_mask=img_gpt_input_mask,
            constraints=constraints,
        )


def main(cfg: FairseqConfig):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(cfg.common)

    if cfg.interactive.buffer_size < 1:
        cfg.interactive.buffer_size = 1
    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.batch_size = 1

    assert (
        not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
    ), "--sampling requires --nbest to be equal to --beam"
    assert (
        not cfg.dataset.batch_size
        or cfg.dataset.batch_size <= cfg.interactive.buffer_size
    ), "--batch-size cannot be larger than --buffer-size"

    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Setup task, e.g., translation
    logger.info("Task: {}".format(cfg.task))
    task = tasks.setup_task(cfg.task)

    # Load ensemble
    overrides = ast.literal_eval(cfg.common_eval.model_overrides)
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Initialize generator
    generator = task.build_generator(models, cfg.generation)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models]
    )

    if cfg.generation.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if cfg.interactive.buffer_size > 1:
        logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info("Type the input sentence and press return:")
    start_id = 0
    for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size):
        print("inputs", inputs)
        results = []
        for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if generator.max_len_b > 2000: # use too long max_len_b to implement dynamic max_len_b
                generator.max_len_b = src_lengths.max().item() + generator.max_len_b - 2000
            img_src_tokens = batch.img_src_tokens
            img_gpt_input_mask = batch.img_gpt_input_mask
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                "net_input": {
                    "src_tokens": src_tokens,
                    "src_lengths": src_lengths,
                    "img_src_tokens": img_src_tokens,
                    "img_gpt_input_mask": img_gpt_input_mask,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(
                generator, models, sample, constraints=constraints
            )
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if cfg.generation.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append(
                    (
                        start_id + id,
                        src_tokens_i,
                        hypos,
                        {
                            "constraints": constraints,
                            "time": translate_time / len(translations),
                        },
                    )
                )

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
            src_str = ""
            if src_dict is not None:
                # print(src_tokens)
                src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
                print("S-{}\t{}".format(id_, src_str))
                print("ST-{}\t{}".format(id_, src_tokens.int().cpu().tolist()))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print(
                        "C-{}\t{}".format(
                            id_,
                            tgt_dict.string(constraint, cfg.common_eval.post_process),
                        )
                    )

            # Process top predictions
            for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]:
                # hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens, hypo_str, alignment = post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)

                score = hypo["score"] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print("HT-{}\t{}\t{}".format(id_, score, hypo["tokens"].int().cpu().tolist()))
                print("H-{}\t{}\t{}".format(id_, score, hypo_str))
                # detokenized hypothesis
                print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str))
                print(
                    "P-{}\t{}".format(
                        id_,
                        " ".join(
                            map(
                                lambda x: "{:.4f}".format(x),
                                # convert from base e to base 2
                                hypo["positional_scores"].div_(math.log(2)).tolist(),
                            )
                        ),
                    )
                )
                if cfg.generation.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment]
                    )
                    print("A-{}\t{}".format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info(
        "Total time: {:.3f} seconds; translation time: {:.3f}".format(
            time.time() - start_time, total_translate_time
        )
    )

# changed from fairseq.utils.py
def post_process_prediction(
    hypo_tokens,
    src_str,
    alignment,
    align_dict,
    tgt_dict,
    remove_bpe=None,
    extra_symbols_to_ignore=None,
):
    hypo_str = tgt_dict.string(
        hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore
    )
    if align_dict is not None:
        hypo_str = utils.replace_unk(
            hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string()
        )
    if align_dict is not None or remove_bpe is not None:
        # Convert back to tokens for evaluating with unk replacement or without BPE
        # Note that the dictionary can be modified inside the method.
        hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=False)
    return hypo_tokens, hypo_str, alignment

def cli_main():
    parser = options.get_interactive_generation_parser()
    args = options.parse_args_and_arch(parser)
    distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)


if __name__ == "__main__":
    cli_main()